UNCLASSIFIED

w 411444

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. YIRGINIA

UNCLASSIFIED

NOTICE: When government or other dreavings, speci-
fications or other data are used for any purpose
other than in connsction with a definitely related
government procurement opereation, the U, 8.
Government thereby incurs no responsidility, nor any
obligation vhatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drewings, specifications, or other
data is not to be regarded by implication or other-
vise as in any manver licensing the holder or sny
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

411444

= l

S

)

>—

L 3

o =

§ o

& T Q63-6N
<Y s

< = MOBILE

A MOBIDIC

COBOL COMPILER

3rd QUARTERLY
PROGRESS REPORT

CONTRACT NO.
DA-36-039-5C-89231

411444 ..

to
] JA”%Y(W(ﬁ

AUG 5 1959'—}

SYLVANIA etecrronMiersid S0
Government Systems Manigsement Tish @
for GENERAL TELEPHONE s ELECTRONICS

QUALIFIED REQUESTORS MAY OBTAIN
COPIES OF THIS REPORT FROM ASTIA,
ASTIA RELEASE TO OTS NOT AUTHORIZED.

-9

-

i
[—

e

1£268-28-600-9¢ -V

‘ON PRIDOY -

UYIATIINOD 10800

JIQIEON V ‘FTEON

QAAISSVIOND

181} weN-winq

) Jo wondiIdssp ¥ puw § “| UNY UT ASRL BONEIGHNNd puw ‘shunusry
IMdInQ 3311dwo) TORCOD ‘SIWIOS IqUL PAIIY PUT SUOTIINIISU]
-oIOWW ‘SINLAOH IGYL § UNY ‘Jqel ulsaq wimq ‘FIMmI0d Qv
wdinO ¢ Uy ‘LSAN 01 $paedal yita FIIPON 01 [TEIRUT SUOTIuN)
pue SIeWL0) F[QR; Y} UC paysIIdwOI2w Nioa 10] parsodat sy esaudosg

QIIAISSYIONN

1§268-29-6£0-95-VA 'ON WEHWO3
‘mty *-dd 16 ‘€961 LSwnuer 1 'N9-C9b ‘ON Moday

‘snasnydese

‘y¢ BigIay wieypaaN ‘oW "$19NpoLd J11103]F PIURALLS JO UOISIAK] V

£

£g dSmoapay ‘iseg £ 20113317 wtuea[ds

‘ON UOTS$3IDY av

1£268-28-6£0-9¢-va

‘ON Wenuwo) -

HITNIKOD 10800
JIGEON v ‘INGON

QIALAISSVIOND

IS8T} ey -meg

3 JO WO IDBMP ® puE § | UNY UL NSEL VOLIEIZITEND pae ‘sINTNIL
Inding 1a71dmoD NOEOD ‘SN0 SQEL PTIIY PUT SUOTIRLISE]
-0JIeN ‘SINULIOA QUL § unY ‘emqr) GFiSeq wie) ‘SIMKJO] FEL
inding ¥ ury “LEAN 03 spreies A TIIHON O) [SUISNT swotIoun)
PU SIFWI0; Qe) WO PINIISWOIIR RIONA I0) PILIvda 5T BEBOIY

AILASEYIIND

1£Z68-38-660-96-VA ON 110D
Uy dd 1g ‘CogT Lyenuep 1 Ny-cob on uoday

“SNISTRIVESEIY
‘$6 SWPII WEYPIIN ‘U “‘$IINPOIJ IIAIDIY NIWRAILG JO WOISIAY] V

‘SWIINEG J1VOLDAF A “iseqg 4G STMOXIDITT vy

“ON UOISSIIIY av

15268-28-850-9¢-¥vQ

"ON wRNW)

UININOD 10800

OKBEON V "ITIEON -

QALIISSYVIONN

1817 JweN-eIRQ
13 jo UONAIIdEap v pue g '] UNY Ul YT L SOLEIyENY pur ‘sRunsin)
inding 2en1dwo) JOYOOD ‘FINWIO el PAIRIIY pUE SUOLIONJISU]
-0JDEN ‘SITWIOS Iqu] § UnY ‘IquL ulisaq wieq ‘SIewiod IqeL
IndInO p UnY LSO) spaedas yitm FIIHON 01 [Fua2u} FWonOuny

PUT 3;70110] JIqW;) UO pIYSTIduOIDE JuoM 403 patrodal sy ssasdoig

QATIISSVIONN

1£269-28-660-95-VA 'ON Pwnuo)
My "dd 16 ‘£961 Lswnuwr | 'No-£90 ‘ON Woday

SRISMYPIRSE N
#6 SWITAY WWPIIN ‘DU ‘$INPOI NIVINFA MURA[LE Jo UOIBIAIG V

AS dtUOIIAA WY

‘el &g >woadeg Ay

‘ON uotesadOY av

1£268-29-6€0-9¢-vA

‘ON WeIW0) -

HATNANOD TOE0D
JIATON V ‘A THOW

AIAISEVIINN

18T] swwy-wieg

aq jo wonidriasap € pUe ¢ 'L GNY U} RERL HOREILIENY puv “sPener]
ndinQ samdiuo) JOH0O ITWIOS JMATL PATIIY PUE PEOTIIDIWE
~01del ‘siswsoj aqel § ury “aquy uBisaq wing “siwnaog oNqeL
wding ¢ uny " LS 03 Spaelas yitm FITHON ©) TWRsme) swonoun;
DUe S19WI0] I1qET 1 WO PANTIdWIodIE RI0M 20) prIodas 8T ssasdoad

OELAISEVIONN

T£268-99-GE0-9C-VA 'ON 1D%1W0)
Mty ‘dd 16 ‘gegl Lrenawr [“Ny-geb ON 1rodoy

‘BRSO RIS T
‘#6 SMIH WeypIaN * UL “BINPOLJ NIPAY MUALLG JO WOBIAIG ¥
‘swasdg Sruoaidarg &g segq 4g SvwoaNT

‘ON UOISSIIIY av

W W e

3

MOBILE
A MOBIDIC COBOL COMPILER

THIRD QUARTERLY PROGRESS REPORT
1 October 1962 to 1 January 1963

Signal Corps
Technical Requirements

SCL-2101IN

Contract No. DA-36-039-8c-89231

\
Submitted by: = .WL

E.W. Jervis, Jr. Manager
MOBIDIC Projects

SYLVANIA ELECTRONIC SYSTEMS-EAST

SYLVANIA ELECTRONIC SYSTEMS
A Division of Sylvania Electric Products Inc.
189 B Street— Needham Heights 84, Massachusetts

r——" wmee GEGSR ANBS NN

Section

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

I PURPOSE
II ABSTRACT

III PUBLICATIONS, LECTURES, REPORTS, AND CONFERENCES

3.1 Publications

3.2 Lectures
3.3 Reports

3.4 Conferences

IV FACTUAL DATA

4.1 General

4.2 MOBILE Utility Symbolic Translator - MUST
4.2.1 Introduction
4.2.2 Features of CAP Language
4.2.2.1 MUST Symbols
4.2.2.2 MUST Operation Codes

4.2.

2.3 MUST Variable Fields

4.2.3 The Construction of a CAP Subfield by MUST
4,2.4 MUST Subroutine Symbo:s

4.3 Run 4 Output Tabie Formats
4.3.1 Data Replies

4.3

#:hnbnh
W W W W

. 1.1 Standard Data Reply

. 1.2 Bulk Reply

. 1.3 Matching Data Reply

. 1.4 Procedure Data Reply
.1.5 Hardware Data Reply
4.3,

1.8 Condition Reply

4.3.2 Data Analyzer Tabie

4.3.3 Address Function Table

4.3.4 Address Variable Tabie
4.4 Data Design Table

Q63-6N

3-1
3-1

4-1
4-1
4-1
4-1
4-2
4-3

4-3
4-5

4-11
4-11
4-11
4-14
4-117
4-18
4-18
4-19
4-20
4-21
4-22
4-23

iii

Section
4.5
4.6
iv

[
[

&
£
]

(5L LR S L 4 R S B S < L 4

S
Ll

1
2
3
4
5
8
.1
.2
3
4
5
6
7
8
9

TABLE OF CONTENTS (Cont.)

DDT Format for File Description

Record, Field DDT Entry Formats

DDT Formats for Condition-Name

DDT Formats for Procedure-Name

DDT Format for Condition-Names for Switches
Table Formats

Block Source Program (BSP)

Expended Source Program (ESP)

BSP1 Correction Table

BSP2 Correction Table

FISN —~ Card Count Table

Symbol Table

File Requirement Table

Assigned Procedure Table

Data Analyzer Table

.10 Data Name List
.11 Subroutine CAPS
. 5.

12 Running CAPS
Macro-Instructions and Related Table Formats
4.6.1 Macro-Instructions

4.6.1.1 Macro-Instruction Header Format
CAP Modifications Words
Relation of Operands and Skeleton
Effect of CAP Deletion Word
Effect of CAP Repetition Word
Macro-Instruction Operands

Fixed Internal Sequence Number (FISN)
Operand

4.6.1.8 Source Data Operand
4.6.1.9 MOBILE Data Operand
4.6.1.10 Subroutine Reference Operand

Ll b e
OO.QQOQ
b b e e e

4,.6.2 Subroutine Calls

Page
4-23
4-25
4-33
4-34
4-35
4-36
4-36
4-37
4-37
4-38
4-38
4-39
4-40
4-42
4-43
4-44
4-46
4-47
4-48
4-48
4-48
4-49
4-50
4-50
4-50
4-51
4-51

4-51
4-52
4-54
4-55

Q63-6N

TABLE OF CONTENTS (Cont.)

Section

4.6.2.1 Cubroutine Call Header Format
4.6.2.2 Subroutine Call Body
4.6.3 CAP Instructions
4.6.3.1 CAP Symbols
4.6.3.2 Other Fields in CAP Format
4.6.3.3 Address Portion Field in the CAP Format

4.6.3.4 Index-Modifier Portion Field in the CAP
Format

4.6.3.5 Special CAP Formats
4.6.4 Object Core Allocation for the Listing
4.6.5 Generated Table Formats
4.6.5.1 Alter Table Format
4.6.5.2 XFISN Table Format
4.6.5.3 Link Table Format
4.7 MOBILE Compiler Qutput Listings

4.8 Qualification Task in Run 1. 3 and Data Name List
Description

4.8.1 Introduction
4.8.2 Table Input Descriptions
4.8.3 Procedure

V CONCLUSIONS
PROGRAM FOR THE NEXT PERIOD

S

VII IDENTIFICATION OF KEY PERSONNEL
7.1 Key Technical Personnel
7.2 Approximate Man-Hours Expended

Q63-6N

Figl_xre

Q63-6N

LIST OF ILLUSTRATIONS

Structure of Index
Structure of Section I and Section III

Possible Structure of DNLA Containing Duplicated
Data-Names

Other Possible Structure of DNLA Containing
Duplicated Data-Names

Structure of DNLA
Calling Sequence Structure Flowchart "PT 166"

vii

SECTION 1
PURPOSE

MOBILE, A COBOL COMPILER FOR THE DATA PROCESSING NEEDS OF THE
ARMY SIGNAL CORPS

The objective of this procurement is to produce, for MOBIDIC Computer
(C, D, 7A) a COBOL Compiler capable of accepting a Source Program written in
COmmon Business Oriented Language, and compiling an Object Program capable
of being operated on the above computers.

This procurement will result in delivery to the U. S. Army Signal Corps
of a COBOL Compiler (MOBILE 1) as specifically defined in Required—COBOL 1961
and with certain features as specified in Elective—~COBOL 1961. The MOBILE I
Task is being implemented by the Applied Programming Department of the Program-
ming and Analysis Laboratory.

Q63-8N 1-1

SECTION 1I
ABSTRACT

~ The program during this period included system test build-up and further
modification of MOBILE required to meet the needs manifested by system test-
ing. This report will concern itself chiefly with specific table formats and func-
tions internal to MOBILE. The following topics are discussed herein:

1.

2
3
4.
5
6
7

Q63-6N

MUST (MOBILE Utility Symbolic Translator)
Run 4 Output Table Formats

Data Design Table (DDT)

Run 8 Table Formats

Macro Instructions and Related Table Formats
COBOL Compiler Output Listings

Qualification Task in Run 1.3 and a description of the Data
Name List (DNLA).

2-1

SECTION III
PUBLICATIONS, LECTURES, REPORTS AND CONFERENCES

3.1 PUBLICATIONS
Title: A Supplement to the COBOL Preliminary Reference Manual
Date: 1 December 1962

3.2 LECTURES

None

3.3 REPORTS
1. Monthly Letter Report 14 November 1862.
2. Monthly Letter Report 7 December 1962.

3.4 CONFERENCES

1. Date 4 October 1862
Location Fort Monmouth, New Jersey
Participants : Signal Corps, Sylvania
Subject Overall Schedule Review and Technical
Review of Progress to Date
2. Date 12 October 1962 —23 October 1962
Location Orleans, France and Zweibrtucken, Germany
Participants : Signal Corps, Sylvania
Subject Discussion of Technical Data Necessary
for Testing MOBIDIC COBOL Compiler
(MOBIDIC MOBILE])
3. Date 12 November 1962
Location : Sylvania, Needham, Mass.
Participants : Signal Corps, Sylvania
Subject Overall Project Status
4. Date 10 December 1962 —13 December 1962
Location : Sylvania, Needham, Mass.
Participants : Signal Corps, COMZ, and Sylvania
Subject Overall Technical Discussion of COBOL
and the MOBIDIC Compiler
Q63-GN 3-1

WS MRS 0 D 0 G S e

SECTION IV
FACTUAL DATA

4.1 GENERAL

Specific table formats and functions internal to MOBILE are described in
detail in this section. The task breakdown is as follows:

. MOBILE Utility Symbolic Translator - MUST

. Run 4 Output Table Formats

. Data Design Table (DDT)

. Run 8 Table Formats

. Instructions and Related Table Formats

. MOBILE Compiler Output Listings

. Qualification Task in Run 1. 3 and Data Name List Discussion

4.2 MOBILE UTILITY SYMBOLIC TRANSLATOR ~ MUST
4.2.1 Introduction

The design of MOBILE includes an intermediate language called CAP,
Since all the statements written in the CAP language exist within MOBILE and are
intended to remain unknown to the ugser of MOBILE, the CAP language is as
machine-oriented as possible, This requires the creators of the CAP instructions
(the compiler programmers) to either "speak CAP" or make use of a transiator.

To the creators of the CAP instructions, CAP itself is only an intermediate
language, the result of a CAP translation (i.e., binary machine instructions)
being the desired end. MODAL* is a language that may be translated (by an
assembly program of the same name) into binary machine instructions.

*MODAL is described in the Second Quarterly Report. It is the "OWN CODE"
used with the MOBILE ENTER verb. When MODAL statements are processed
by MOBILE run 1. 4 and the ENTER generator, CAP statements are generated

internally.

Q63-6N 4-1

However, MODAL is much more user-oriented than CAP. It was thought
advantageous to combine the user-oriented qualities of MODAL and machine-
oriented qualities of CAP.

This was done by creating a new language, MUST* (MOBILE Ut ility Sym-
bolic Translator). It is currently being debugged and will translate MUST coding
into CAP language, constructing a CAP skeleton table for the MOBILE System
according to the requirements of Run 6. The characteristic of MUST is that a
DUST** translation of it will produce desirable machine code. On the other
hand, a MUST translation of it will produce CAP statements which on a subse-
quent CAP translation will produce the machine code.

Two desirable conditions have been obtained through the use of MUST:
1. CAP instructions are more easily produced, and

2. CAP instructions are translated and debugged as machine instructions
without waiting for a CAP-to-binary translator.

Since the potential user of MUST is essentially working backwards from
machine code to CAP, and thence to MUST, it is perhaps best to start by describ-
ing the CAP language and show how its various elements are obtained in MUST.
CAP instructions are described in detail in Section 4. 6. 3.

4.2.2 Features of CAP Language

The features of CAP Language that require explanation are the symbolic
location, the symbolic operation code, and the segmentation and contents of the
variable field.

*MUST is a tool for the compiler programmer used in the development and
debugging of generators for incorporation within the compiler.

*+DUST (MOBIDIC D UNLIMITED SYMBOL TABLE) as on page 4-1 of the First
Quarterly Report.

4-2 Q63-6N

rene ouat GHD D AN 0 e

e

wamed SEEE GRS s

4,2,2,1 MUST Symbols

The CAP gymbolic location is blank in the CAP Skeleton Table except for
certain CAP instructions within subroutines. These subroutine CAP instructions
have a 15-bit "internal subroutine symbol.'" (The symbolic location field of a
MUST statement will give a corresponding ''internal subroutine symbol" in the
resulting CAP instruction if it follows the rules for Subroutine Reference Oper-
ands.) In all other cases the symbol appearing in the symbolic location field of
a MUST statement will be used only as a location symbol, useful in computing the
relative addressing required by MOBILE data self-reference operands,

4,2,2.2 MUST Operation Codes

The CAP symbolic operation code has 9 bits and includes the CAP class
(see Section 4, 6. 3.2) and the machine instruction or pseudo code, The corre-
spondence between MUST symbolic operation codes and CAP symbolic operation
codes will be given in conjunction with a description of the variable field options.

4.2,2,3 MUST Variable Fields
The CAP variable field contairs four basic entities:
1. a binary constant
2. a MOBILE data reference
3. a subroutine reference

4. a zero with the corresponding number (bits 13-15) indicating that an
operand will be supplied at compilation time

The CAP variabie field may be divided into one, two, or three subfields.

The MUST variable fieid contains one to three subfields which in general
resemble those of MODAL and which wiil be enumerated under the Operation
Codes, However, it should first be understood how MUST will treat each sub-
field, Each subfield may be composed of one or more elements connected by
the arithmetic connectors + or -, The elements may correspondto any of the three

Q63-6N 4-3

s

Powe—

e et o

4,2,2,1 MUST Symbols

The CAP symbolic location is blank in the CAP Skeleton Table except for
certain CAP instructions within subroutines. These subroutine CAP instructions
have a 15-bit "internal subroutine symbol." (The symbolic location field of a
MUST statement will give a corresponding ''internal subroutine symbol' in the
resulting CAP instruction if it follows the rules for Subroutine Reference Oper-
ands.) In all other cases the symbol appearing in the symbolic location field of
a MUST statement will be used only as a location symbol, useful in computing the
relative addressing required by MOBILE data sel!-reference operands.

4.2,.2.2 MUST Operation Codes

The CAP symbolic operation code has 9 bits and includes the CAP class
(see Section 4. 6. 3.2) and the machine instruction or pseudo code. The corre-
spondence between MUST symbolic operation codes and CAP symbolic operation
codes will be given in conjunction with a description of the variable field options.

4,2,2,3 MUST Variable Fields
The CAP variable field contains four basic entities:
1. a binary constant
2. a MOBILE data reference
3. a subroutine reference

4. a zero with the corresponding number (bits 13-15) indicating that an
operand will be supplied at compilation time

The CAP variable field may be divided into one, two, or three subfields.

The MUST variable fieid contains one to three subfields which in general
resemble those of MODAL and which wiil be enumerated under the Operation
Codes, However, it should first be understood how MUST will treat each sub-
field. Each subfield may be composed of one or more elements connected by
the arithmetic connectors + or -, The elements may correspondto any of the three

Q63-6N 4-3

entiti»s allowed in the CAP variable field. All subfields are evaluated by a stand-
ard routine which gives rise to two quantities, a SYMBOL and an INCREMENT.
Depending on the symbolic operation code and the particular subfield being trans-
lated, one or both of these quantities will be used to create the corresponding CAP
instruction subfield. These quantities, SYMBOL and INCREMENT, are now ex-
plained in the light of the four entities available in a CAP subfield.

Decimal or octal numbers appearing alone in a MUST subfield will be con-
vertedto binary and added to the INCREMENT, Standard symbols (ACC, QRG, etc.,
of which a list is included on page 4-10) will cause their value to be added to the
INCREMENT.

One of a restricted set of six character symbols appearing as an element
in a MUST subfield will cause one of a corresponding set of MOBILE Data Refer-
ence indicators to be placed in the SYMBOL. This set of aymbols is given in
Section 4. 2. 4 of MUST Subroutine Symbols.

One of a restricted set of six character symbols appearing as an element
in a MUST subfield will cause one of a corresponding set of CAP Subroutine Refer-
ence indicators to be placed in the SYMBOL, This set of symbols is given in
Section 4. 2. 4 of MUST Subroutine Symbols.

The appearance in a MUST subfield of a location symbol as the first element
will cause a MOBILE Data Self- Reference indicator bit to be placed in the SYMBOL.
The value of that symbol‘s location relative to the start of the unit of object code
will be added to the INCREMENT. The appearance in a MUST subfield of a location
symbol as any element but the first element will merely cause its value to be added
to (or subtracted from) the INCREMENT.

The appearance of a double asterisk in a MUST subfield will cause a special
indicator to be placed in the SYMBOL. (The appearance of an equal sign in a sub-
tield will cause the remainder of the subfield to be completely ignored and will have
the same effect as a double asterisk.)

On return from tne subroutine, which thus evaluates a subfield, MUST will
use the SYMBOL and the INCREMENT to construct the pertinent subfield of the CAP.
The manner in which this is done will now be described for all MUST symbolic
operation codes.

4-4 Q63-6N

evee GEED WD S A e

4.2,3 The Construction of a CAP Subfield by MUST

All of the MOBIDIC machine operation codes are obtainable through CAP
language and therefore may be obtained via MUST by using the symbolic operation
codes that are acceptable to DUST. Note that ""extended" operation codes and
"simulated machine instruction'codes (such as LDQ, CSZ) are not accepted. The
majority of MUST operation codes may be followed by an 'a, g, b'" type of vari-
able field. In such a case, a double asterisk indicator found in SYMBOL will
cause the corresponding part number to be set in the CAP instruction and the
INCREMENT to be ignored. A self-reference indicator found in SYMBOL will
cause the current location counter to be subtracted from the value found in
INCREMENT and the result stored as an increment or decrement to a self-refer-
ence operand. A MOBILE Data Reference Indicator found in SYMBOL will cause
the INCREMENT to be stored as an increment or decrement to the MOBILE Data
Reference Operand. A Subroutine Reference Indicator will cause the INCREMENT
to be stored as an increment or decrement to the Subroutine Reference Operand.
Note that with g and b subfields, the SYMBOL is ignored if it is not a double aster-
isk indicator and the INCREMENT is stored directly into the CAP instruction.

If a MOBILE Data Reference Operand is found in SYMBOL, the value in
INCREMENT is added to the increment already found in the MOBILE Data Refer-
ence Operand. Thus, it is possible to define the nth location following a MOBILE
Data Symbol by a unique name: the table symbol plus an increment (e. g.,
FILDAT + 12) may be used interchangeably with a name having some mnemonic
meaning (e.g., AUXBFF). Either use will yield a CAP instruction with the
MOBILE data symbol for FILDAT and an increment of twelve. A further incre-
ment to AUXBFF may also be used (e. g., AUXBFF + 1), but does not seem
necessary.

The list of MUST operation codes and the corresponding CAP operation
codes for which an a, g, b variable field is expected is given below:

ADB/024 ADD/012 ADM/013 CAM/011
CLA/010 CLS/014 CSM/015 CYL/085
CYS/034 DVD/022 DVL /028 HLT /000
LGA/003 LGM/002 LGN/004 LOD/051
LDX/053 MLR/021 MLY/020 MSK/055
Q63-6N 4-5

NRM /037 RPA/054 RPT/001 SBB/025

SBM/017 SEN/005 SHL /030 SHR/032
SLL/031 SNR/007 SNS/006 SRL/033
STR/050 SUB/016 TRC/047 TRL /041
TRN/046 TRP /044 TRS/042 TRU/040
TRX/043 TRZ/045 TRA /140

Note that if a b subfield occurs in a LOD instruction, it will have an octal
7740 logically added to it before being placed in the CAP instruction's b field.

Four other MUST operation codes are accepted which may have ana, g,b
variable field. The g-b subfield is treated like the a field. Note that in this case,
if a Subroutine Reference is required in either subfield,an increment to it cannot
be given since the CAP format does not allow it. The operation codes are as
follows:

MOV /052 PZE/105 MZE /106 MVA/152

In addition, it should be noted that a Subroutine Reference in the a field
may not have an increment due to the limitations of the CAP format.

Three additional MUST operation codes are accepted and give rise to the
corresponding CAP operation codes. They are explained below:

OCT/103 BES/ 101 BSS/102

The variable field of the OCT code may consist of the double asterisk or
0-12 octal characters preceded by a sign. Only one subfield is accepted. The
number will be right justified after conversion to binary.

The variable field of BSS and BES codes may consist of a double asterisk
or a number. Only one subfield is accepted. The number will be stored in the
CAP instruction. Note that if the double asterisk is used, any instructions that
refer to instructions on the "other side' of the BSS or BES CAP instruction via
self-reference operands will probably not contain the correct increments.

4-6 Q63-6N

Five additional MUST operation codes are accepted which do not give
rise to CAP instructions but are actually instructions to the MUST translator.
They are ORG, REM, SYN, END, and FIN.

The ORG code signifies that a new packet of coding is to begin. Three
subfields must appear in the variable field, L, m, and n. The subfield "L"
signifies the location in the CAP Skeleton Table at which the packet of coding will
begin. If L is an asterisk, the first CAP instruction of the packet of coding will
start after the last CAP instruction of the previous packet of coding (or the space
reserved by its END card). The L subfield allows a packet of coding to be trans-
lated and inserted into an existing CAP Skeleton Table. The second subtield of
an ORG variable field is a numeric field that gives the macro modification type.
This field must be zero for subroutines. The third subfield, n, gives the macro
or subroutine name in symbolic notation listed in paragraph 4. 2. 4.

The REM code is ignored by MUST and is merely passed onto the listing.

The SYN code allows the user of MUST to place a location type of symbol
(SB2) into the symbol table. The variable field may consist of any predefined
expression. The low order 15 bits of the INCREMENT will be placed into the
symbol table as the value of the symbol, and SYMBOL will be ignored.

The END code signifies that the end of a packet of object coding (macro
or subroutine) has been reached. The CAP instructions for the CAP Skeleton
Table are punched and the correct directory word made up. If a number appears
in the variable field END, it will be interpreted as the number of CAP instruc-
tions for which room is to be left in the CAP Skeleton Table. Thus, during de-
bugging, the CAP Skeleton Table may be left in an expanded form. Corrections
may be made via binary corrections or the entire packet of MUST coding may be
retranslated and ingerted into the table, If SFF16 is set during MUST-to-CAP
translation, the variable field will be ignored and a compressed CAP Skeleton
Table will be made up during translation of END.

The FIN code signifies that all the packets of coding have been translated.

Q63-6N 4-1

4.2.4 MUST Subroutine Symbols

The reserved MOBILE data symbols and their CAP MOBILE Data Reference
are as follows:

CAP
MUST Symbol Key Symbol Increment
AUXBFF 2 2100 14
BUFFSZ 2 2100 17
BUFOVF 2 2100 27
CMPBSZ 2 2100 25
CURRIX 2 2100 15
CYCLWD 2 2100 21
DATASZ 2 2100 16
FILDAT 2 2100 00
MFRDAT 2 2200 00
RDRCIN 2 2100 26
RDRCSZ 2 2100 23
RELSWD 2 2100 22
RORDER 2 2100 20
TALLYS 2 3200 00
TAPDAT 2 2300 00
WORDER 2 2100 20
WTRCIN 2 2100 27
WTRCSZ 2 2100 23

The reserved subroutine symbols and their CAP Subroutine Reference
operands are as follows:

Subroutine Symbol English Subroutine Name MUST Symbol
01000 Input-output Executor Routine OTRAP
01001 Compute Type-2 Address Function SKELA
02000 First 1/O Constant Pool AUXSB
02001 Compute Type-4 Address Function SKELB
03000 Second I/O Constant Pool AUXSC
03001 Compute Type-5 Address Function SKELC
04000 First Temporary Storage Pool AUXSD
05000 Second Temporary Storage Pool AUXSE
06000 Open Routine AUXSF
07000 Close Routine AUXSG

4-8 Q63-6N

Subroutine Symbol

Q63-6N

10000
11000
14000
15000
16000
17000
20000
21000
22000
23000
24000
25000
26000
27000
30000
31000
32000
33000
66000
67000
70000
71000
72000
73000
74000
75000
76000
77000

English Subroutine Name

Read-Write Fixed File
Change to Next Reel

I/O Save Subroutine

Write Type Variable

Handle Single Buffer

Handle Double Buffers

1/0 Algorithmic Formula
Prepare to Write

Write Last Block
End-of-File Routine
Continuation Routine
Check-a-Tape Routine

Save and Restore Flip-Flops
Write Header or Trailer Block
1/0 Binary-to-FIELDATA
Initialize Standard Printout
Compute Checksum

Check for Rerun

Bulk Move Subroutine
Editing Subroutine

Zero Divisor Test
FIELDATA Rounded
Isolation B Routine

General Storage

Isolation Subroutine
Examine Character Subroutine

Binary-to-FIELDATA Conversion
FIELDATA-to-Binary Conversion

MUST Symbol

AUXSH
AUXSI
AUXSL
AUXSM
AUXSN
AUXSP
AUXSQ
AUXSR
AUXSS
AUXST
AUXSU
AUXSV
AUXSW
AUXSX
AUXSY
AUXSZ
AUXSA
BUFAD
BILKMV
EDITS
ZDTST
FDRND
CHRIS
GNSTR
ISOLT
EXMNE
BINFD
FDBIN

4-9

Note that these MUST subroutine symbols are only 5 characters in length,
A gixth character must be appended when the symbol is used, and will be treated
as an octal character and stored in the CAP subroutine symbol in the "internal sub-
routine symbol" bits. This table will be expanded to incorporate the symbols of
more subroutines or to take account of duplicate MUST symbols for the same CAP
subroutine.

The list of standard symbols and their octal equivalents is as follows:

Szmbol Octal
IR1 77741
IR2 77742
IR3 77743
IR4 17744
ACC 77750
QRG 77751
BRG 77752
PCT 77753
PCS 77754
WSR 77760
ZERO 77740
SFF1-SFF16 110-127

4-10 Q63-6N

4.3 RUN 4 OUTPUT TABLE FORMATS

This section contains the formats of all the Data Replies, Data Analyzer
Table, Address Function Table, and Address Variable Table.

4.3.1 Data Replies

When it has been determined what type of data reply is to be made to any
query within a compressed generator call, and when this reply has been appended
to the call, a 3-bit key is necessary to inform Run 3 of the reply type.

Type of Reply Key
Standard reply 000 ARITHMETICS
Bulk reply 001 MOVE
Matching reply 010 MOVE CORRESPONDING
Procedure reply 011 GO TO
Hardware reply 100 IF STATUS
Condition reply 101 IF RELATION

4.3.1.1 Standard Data Reply
1. Table name—Standard Data Reply.
2. Table symbol—none, an element of GB4N,

3. Number of words/entry—variable, dependent on editing
information of data-unit queried.

4. Number of entries —~dependent on number of queries on fields.

5. Table function—used by the generators for arithmetic

statements.
8. Table format—
Word 1:
Bits 1-3 Zero
Bits 4-9 File number
Bits 10-21 Fixed increment

Q63-6N 4-11

4-12

Table format—(Cont.)
Bits 22-23
24

25-26
27-36

Word 2:
Bits 1-3

10

11

12-18
19

20-24
25-26

Not used

Specifies negative fixed increment
(yes = 1, no = 0)

Not used

Final address function serial number

Standard reply key (000)

Editing information present
(no =0, yes = 1)

Picture present
(no =0, yes = 1)

"Justified" clause given
(no =0, yes = 1)

Does data obey standard rules of justification?
{yes =0, no = 1)

Is data unit synchronized?
(no =0, yes = 1)

Direction of synchronization
(right = 0, left = 1)

If Picture is present, can all information
iven in Picture be represented by bits?

yes =0, no = 1)

Assumed point location: direction to move to

find point location

(left = 0, right = 1)

Assumed point location: number of places
from low order end to find point

Is there a sign-name?
(no = 0, yes = 1)

Not used

Base
(binary = 01, FIELDATA = 10, mixed = 11)

Q63-6N

Bits 27
28

29
30-31

32
33-36
Word 3:
Bits 1
2-3
4-5
6-20
21
22-27

28-38

Word 4:

Word 5~Word N:

Word N+1-Word K:

Q63-6N

I8 class given?
(no = 0, yes = 1)

If class is given, type
(numeric = 0, non-numeric = 1)

Not used

Recording mode
(NISN = 00, ISN = 01, either = 10 or 11)

Is there a "signed' clause?
(no = 0, yes = 1)

Type of sign (See Word 3 (33-36) in
Section 4. 4. 2)

Is size of data unit constant?
(yes = 0, no = 1)

Not used

Units of size
(bits = 00, FIELDATA characters = 01,
words = 10)

Maximum size of data unit~FIELDATA base

Starting bit information
(fixed = 0, varying = 1)

Net starting bit— FIELDATA base

Jump to reply on "Sign Name"
(zero if no "Sign Name")

Format is the same as Word A of DDT. See
paragraph 4. 4. 2. NOTE: This word is present
if Bit 4 of Word 2 above =1.

Format is the same as Word D of DDT. See
Paragraph 4. 4. 2 NOTE: These words are
present if Bit 5 of Word 2 above =1.

Format is the same as above since a sign name
is a data-name; therefore a standard data reply
is made. NOTE: These words are present if
Bit 19 of Word 2 = 1.

4-13

4.3.1.2 Bulk Reply
1. Table name—Bulk Reply.
2. Table symbol—none, an element of BG4N.

3. Number of words/entry—variable, dependent on size information
of data unit queried.

4. Number of entries—dependent on number of queries on non-
elementary items in "MOVE" calls.

5. Table function—used by the generators for MOVE statements.

6. Table format-

Word 1:
Bits 1-3 Zero
4-9 File number
10-21 Fixed increment
22-23 Not used
24 Specifies negative fixed increment
(yes = 1, no = 0)
25-26 Not used
27-36 Final address function serial number
Word 2
Bits 1-3 Bulk reply key
(001)
4-5 Unit of size
(bits = 00 FIELDATA character = 01,
words = 10)
6-20 Maximum size of data-unit
21 Starting bit information (fixed = 0,
variable = 1)
22-27 Net starting bit
28 Does data contain variable blocks ?
(no =0, yes = 1)
29-30 Base (binary =01, FIELDATA = 10, mixed = 11)

4-14 Q63-6N

Bits 31

32

33-36

Has class been given?
(no = 0, yes = 1)

If class is given, type
(numeric = 0, non-numeric = 1)

Not used

If there are variable blocks as specified in Word 2, Bit 28, Word 2 is
followed by one word or a variable number of words for each fixed block or vari-
able block respectively in their given order.

Fixed Block Format:

Bits 1

4-21
22-36

Variable Block Format:

Word 1:
Bits 1

5-6
7-21
22-36

Specifies a fixed block
(0)

Not used

Is this the last block?
(no = 0, yes = 1)

Not used

Size of block, in bits.

Specifies a variable block
1)

Type of control
(count. control = 0, sentinel control = 1)

Might block not be present?
{(no =0, yes = 1)

Is this the last block?
(no =0, yes = 1)

Not used
Maximum number of occurrences

Fixed size of repeated units, in bits

The following two words occur next if the variable block is under count

control:
Word 2:
Bits 1

Q63-6N

Base of count field
(binary = 0, FIELDATA = 1)

4-15

Bits 2

3-18
19-24

25-36

Word 3:
Bits 1-3
4-9
10-21
22-23

24

27-36

4-16

Starting bit information
(tixed = 0, variable = 1)

Not used

Net starting bit

Size of count field in
characters or bits

Not used

File number

Fixed increment

Not used

Specifies negative increment
(yes = 1, no = 0)

Not used

Final address function
serial number

Q63-6N

— weEm S Gee

The following words occur if the variable block is under sentinel control:

Word 2:
Bits 1-6 Starting word in repeated unit of sentinel word
7-12 Starting bit
13-21 Size of sentinel field, in bits
22-286 Not used
27-36 Number of Value words following
Word 3—Word N: Value words —Format is the same as Word E-N

of DDT. See paragraph 4.4. 2.

4.3.1.3 Matching Data Reply

1. Table name— Matching Data Reply

2. Table symbol—none, an element of GB4N

3. Number of words/entry—variable depends on hierarchy and size of
the names.

4. Number of entries—dependent on number of queries on data units
within a Move Corresponding verb.

5. Table function—used by the generators for MOVE CORRESPONDING
statements.

6. Table format-

Word 1:
Bits 1-3 Matching reply key
(010)
4-12 Parent jump, relative to first generator call
header word
13 Specifies if data unit has descendant
(yes = 0, no = 1)
14 Elementary item
(yes = 1, no = 0)
15-16 Not used
17-19 Number of words following for its data-name

Q63-6N 4-17

Bits 20-21 DDT memory load number
22-36 DDT entry address

Word 2—-Word N:

Bits 1-6 First character of data-name

7-12 Second character of data-name

etc., as many words as necessary to express this data-name
with binary-zero fill to the end of the word.

NOTE: Each descendant in the hierarchy to the data-name queried will

have the same format and will succeed that data-name.

4.3.1.4 Procedure Data Reply

1.
2.
3.

S

Table name—Procedure Data Reply

Table symbol— none, an element of BG4N
Number of words/entry—1
Number of entries —dependent on number of queries on procedure names.

Table function—used by the generators for PERFORM, GO TO, ALTER

statements.
Table format—
Bits 1-3 Procedure reply key (011)
4-6 Not used
7-21 Procedure beginning FISN
22-36 Procedure ending FISN

4.3.1.5 Hardware Data Reply

1.
2.

Table name - Hardware Data Reply

Table symbol—none, an element of GB4N

Q63-6N

3. Number of words/entry—1

4. Number of entries—dependent on number of queries on hardware
names.

5. Table function—used by the generators for IF STATUS statements.

6. Table format—

Bits 1-3 Hardware reply key

(100)

4 On-Off Status
(on = 0, off = 1)

5-6 Not used

7-12 Hardware number
(low order 6 bits of MOBIDIC device
designation)

13-36 Not used

4.3.1.6 Condition Reply

1. Table name—Condition Reply
2. Table symbol—none, an element of GB4N

3.. Number of words/entry—variable, dependent on editing information of
data unit queried

4. Number of entries —dependent on number of queries on condition names
5. Table function—used by the generators for IF RELATION statements

6. Table format—

Word 1:
Bits 1-3 Condition reply key
(101)
4-9 Number of values (literals)
10-24 Number of bits to express each value
25-36 Not used

Q63-6N 4-19

Word 2—-Word N: Value words - Format is the same as Word E-N
of DDT. (See paragraph 4.4.2.)

Word N + 1:
Bits 1-3 Not used
4-9 File number

10-21 Fixed increment

22-23 Not used

24 Specifies negative fixed increment

(yes = 1, no = 0)

25-26 Not used

27-36 Final address function serial number
Word N + 2: Same as Word 2 of Standard reply
Word N + 3: Same as Word 3 of Standard reply
Word N + 4: Same as Word 4 of Standard reply

Word N + 5—-Word R: Same as Word 5—~Word N Standard reply

Word R+ 1-Word L: Same as Word N + 1-Word K Standard reply

4. 3.2 Data Analyzer Table

1. Table name—Data Analyzer Table

Table symbol -TK45 produced by Run 4

Number of words/entry-3

2
3
4, Number of entries —dependent on number of data replies made by Run 4.
5. Table function—used by Run 8 to produce the Data Analyzer Listing

6

Table format—

Words 1 and 2: Format is the same as Words 1 and 2 of the
final TK45. (See paragraph 4.5.9.)

4-20 Q63-6N

uvn SR W A e

Word 3:

Bits 1-36 Not used

4.3.3 Address Function Table

1. Table name-— Address Function Table

Table symbol - TA3N produced by Run 4
Number of words/entry—3

Number of entries —dependent upon the complexity of the Data Division

o & w N

Table function—used by Run 6 to produce "computes' and ''loads of
index registers'' at object time.

6. Table format—

Word 1:
Bits 1-6 Address function key
(type 2 = 2, type 4 = 4, type 5 = 6)
7-21 Key size: octal 3: words in length (3)
22-36 Item size: octal 3: words per item (3)
Word 2:
Bits 1-3 Function type
(type 2 = 010, type 4 = 100, type 5 = 110)
4-20 Type 2: not used
Type 4: value in words
Type 5: value in bits
21 Not used
22-36 Type 2: not used
Type 4 or Type 5:
Bits 22 0 = working storage;
1 = special storage
23-36: Fixed word increment within
storage area
Word 3:
Bits 1-6 File number

Q63-6N 4-21

7-186 Type 4: not used
Type 2: number of jump word
Type 5: number of jump word
Bits 7 : 0 = NOT firat type 5 address
function
1 = IS first type 5 address
function
8-10: not used
11-16: starting bit of address function

17-26 Previous address function number

27-36 Serial number of this address function
Type 2: used for a block address after a
variable block
Type 4: used with an Occura given in words
Type 5: used with an Occurs given in bits

4.3.4 Address Variable Table

1.

2
3.
4

w

4-22

Table name—Address Variable Table

Table symbol~produced by Run 4 and left in core.
Number of words/entry—1

Number of entries —dependent upon the number of subscripts used in
the Procedure Division Source program

Table function—used by the generators for optimization
Table format-
Bits 1-20 Not used

21 Integer literal
(yes = 1, no = 0)

22 Working storage = 0
Special storage =1

23-36 Fixed increment within this storage area

Q63-6N

4.4 DATA DESIGN TABLE

This section contains the Data Design Table format used by RUN 4,

4.4.1 DDT Format for File Description

Word O:

Bits 1-3
4-15

16-21
22-38

Word 1:
Bits S
1

10-11
12

13-18
19-24

25-30
31-36

Q63-6N

DDT Entry ID File: = 010

Maximum block size 12
Note: Minimum block size is found in Word 3.

Label "VALUE'" Jump Address
6 -bit address —relative to DDT memory load.

Location of next DDT entry 15-bit addreas —relative to DDT
memory load.

Is the block variable or fixed? (0 = fixed, 1 = variable)

Not used

Are there labels? (0 = yes, 1 = no)

Is there more than one type of data record? (0 = yes, 1 = no)

Is the complete file description in this memory load?
(0= yes, 1= no)

Units of block size (00 = FIELDATA characters, 01 = records,
10 = words)

Address currency information (01 = yes, 10 = no)

Was this file description taken from the library?
(0= no, 1= yes)

Recording Mode (00 = NISN, 01 = ISN)
Not used
Location within this entry of the file's name

Location within this entry of the renamed file -name.
If 0 implies that there is no renamed file -name.

Not used
File number

4-2%

Word 2:

Bits 8

[S 7~

13-36

Is record size fixed? (0 = yes, 1 = no)

Not used

Units of record size (0 = characters, 1 = words)
Is a header present? (0= no, 1= yes)

Is the trailer or hash-total present? (00 = neither, 11 = trailer
is present, 10 = hash-total is present)

Not used
Maximum record size

Minimum record size

Not used
Minimum block size

File size in number of records if given

Word 4-? Descendants

Bits S
1

3-6
7-21

22-36

1 = last word; 0 = more words follow

Is the record, located by bits 7-21, a label record?
(0= no, 1=yes)

Is the record, located by bits 22-36, a label record?
(0= no, 1= yes)

Not used

Location in this memory load of the DDTentry for a record
contained in this file

Location in this memory load of the DDT entry for a record
contained in this file

Note: This field might be zero in the last word if there
is an odd number of record types in the file.

Q63-6N

Word A - ? File-name (1 to 5 words)

Located by bits 13-18 in Word 7. The first character of the
file-name is in bits 1-6 of Word A; the second, in bits 7-12 of Word
A; etc. The sign bit (1) indicates last word with master-space-fill
on the right.

Word B—? Renamed File-name (1 to 5 words)

Located by bits 19-24 in Word 1. The first character of the
NAMED file-name is in bits 1-6 of Word B; the second, in bits 7-12
of Word B; etc. The sign bit indicates last word. The Renamed
File-name may not be present.

Word C-X Value Information

If the data is present, it is located via bits 16-21 in Word O. The
first character of the Value is located in bits 1-6 of Word C; the second
character is located in bits 7-12 of Word C; etc. Sign bit (1) indicates
last word.

4.4.2 Record, Field DDT Entry Formats

Q63-6N

Word 0
Bits 1-3 DDT entry ID. For record field: 000
4 Is this a field? (0 = yes, 1 = no)

5 Is this data-unit redefined? (0 = no, 1 = yes)
Note: lllegal for levels 01, 66

6 Is this data-unit in a label record? (0= no, 1 = yes)
7-12 Location of editing information
13-21 Size of previous DDT entry
22-36 Location of next DDT entry
Word 1:
Bits S Is there any editing information? (0 = no, 1 = yes)
1-6 Adjusted level-number

Note: Level-number 77 will be octal 77
Level-number 66 will be octal 66

4-25

7-12 File-number

13 Is data-unit a simple subscript? (0 = no, 1 = yes)
14 Does this label field have a value? (0 = no, 1= yes)
15 Is this data-unit in a labeled-item record? (0 = no, 1 = yes)

16-18 If this data-unit is in a label, what type of label is it?
Values: 000 = BEGINNING FILE LABEL
001 = BEGINNING TAPE LABEL
010 = END OF FILE LABEL
011 = END OF TAPE LABEL
100 = OTHER

19 Is this field used to find the number of occurrences?
{0 = no, 1= yes)

20 Is this field used to find the size? (0 = no, 1 = yes) Used by

21 Is this field a "sign-name?" (0 = no, 1 = yes) Run 1.2

22-36 Location of this data-unit's parent's DDT entry

Word 2 (contains jumps to variable information)

Bits S Elementary item (1 = yes, 0 = no)

1-6 Location of this data-unit's data-name (Word B)

7-12* Location of this data-unit's descendants (Word C)
13-18* Location of this data-unit's Picture (Word D)
19-24* Location of this data-unit's Value (Word E)

Note: A Value, given by Source Program for a data-unit
in the file section, will be ignored.

25-30* Location of either:

A. The Data-name Address Word (DNAW) for the data-name
in the "OCCURS DEPENDING UPON" option (Word F)

or

B. The Size information, given at the record level only
(Word G)

31-36* Location of "JUMP —infdrmation word' giving jumps to
A. The Range (Word I)

B. Sign-name (Word J)
#f the 6 bits are zero, thenthe item is not present.

4-26 Q63-6N

o~ ——

Q63-6N

Word 3 Arithmetic Information

Bits 1
2

14
15-18
19-24
25-26
27
28
29
30
31
32
33-36

Has the Justified clause bcen given? (0= no, 1 = yes)
Does the data obey the standard rules of Justification?
(0 = yes, 1= no)
Note: The standard rules are:
Numeric data: right justified, zero fill on left
Non-numeric data: left justified, space fill on right
Is data-urit synchronized? (0 = no, 1 = yes)
Left or right synchronization? (0 = right, 1 = left)

If PICTURE is present, then can all information given in the
picture be represented by bits? (0 = yes, 1 = no)

Assumed Point Location: Direction to move to find point
location (0 = left, 1 = right)

Assumed Point Location: Number of places from low order
end to find point

Is there a sign-name? (0= no, 1 = yes)
Not used
Not used
Data Base (01 = tinary, 10= FIELDATA, 11 = Mixed)
Has the Class been given? (0= no, 1= yes)
if class has keen given (0 = numeric, 1 = non-numeric)
Not used
Recording Mode given (0 = no, 1 = yes)
Recording Mode (if bit 30 = 1) 0 = NISN, 1 = ISN
18 there a SIGNED clause? (0= no, 1 = yes)
Type of Sign 0 = No sign indicated
1 = Sign bit (bit 32 must be 1)
2 = High order "+ " (if bit 32 = 1, implies
high order aig'n).
3 = High order "-"
4 = CR
5=DB

& = Floating "+"
7 = Floating "-"

4-27

Note: See PICTURE clause in section 5.2.9 of the COBOL Preliminary
Reference Manual for meanings of ''+", "-", CR, DB

Word 4 Size and Occurrence Information

Bits S
1-2
3-6
7-21

22-36

Is the Size of this data-unit constant? (0 s yes, 1= no)
Units of Size (00 =bits, 01 = FIELDATA characters, 10 = words)
Not used

Maximum Size of data-unit
Note: Size will include the operational sign if not in sign bit

Maximum number of occurrences

Word 5 Occurs and Addressing Information

Bits S
1-6

7-12

13
14

15

16

17

18-21
22-36

Is there any number of occurrences? (0 = no, 1 = yes)

If input: 2nd step, number of bits (or starting bit) (i.e., bit
1, 2, 3,...)

If input: 1st step, in words (to get around A words) (i.e., word
0, 1, 2...)

Is there a variable number of occurrences? (0 s no, 1= yes)

If there is a variable number of occurrences, how can the
exact number be found? (0 = count field, 1 = sentinel field)

Are there any A Words present? (0= no, 1= yes)

Is the addressing information record or parent relative?
(0 = record relative, 1 = parent relative)

If input: Leap? or (exactly equivalent)
Tsthe addressing information for the input not the same as for

output? (0= no, 1= yes)
Not used

If in;y_t: 2nd step, number of words (or starting word) (i.e.,
word 0, 1, 2,...)

Notes on Word 5

1. If an input record is parent relative (bit 16 = 1), then the lst step
(bits 7-12) and Leap bit (20) have no meaning.

4-28

Q63-6N

Q63-6N

2. If the ?ddressing information for the input is the same as the output (bit
17 = 0), then

1st step (bits 7-12) = number of A Words present in record (to jump
around)

2nd step (bits 1-6, 22-36) = distance from 1st word following A Words
(if any) to 1at bit of data-unit

3. The method of obtaining the correct addressing information is described
below:

If Input Record

If Parent Relative (bit 16 = 1): Starting word, bit (bits 22-33, 1-6)
If Record Relative (bit 16 = 0):

1. If A Words are not present (bit 15 = 0):
then, starting word in bits (22-36) starting bit in bits (1-6)

2. If A Words are present (bits 15 = 0): If no Leap (bit 17 = 0):
then, starting word = first step (bits 7-12) + second step (bits
22-36) starting bit in bits (1-6)
If Leap (bit 17 = 1): (as above)
If Output Record

If input # output (bit 17 = 1), starting word and bit can be found in
Word 7, bits 22-26, 1-6.

If input = output (bit 17 = 0), starting word and bit can be found in
Word 6, bits 22-36, 1-6.

Note: Check bit 18 for record or parent relative.

Word 6 Size, Occurs, Addressing Information

Word 6 is present only if there are any variable occurrences (Word 5,
bit 13 = 1), variable size (Word 4, sign bit = 1), or input not equal
output addressing information {Word 6, bit 17 = 1).

Bits 1-6 If cutput: 2nd step, number of bits (or starting bit)

7-21 Minimum size
Note: Same units as maximum size in Word 5.

22-36 If output: 2nd step, number of words (or starting word)

4-29

4-30

Word 6 or 7 or 8 Label Record Information

Word 6, 7, or 8 may not be present. Data-unit must be in a label record
(Word 0, bit 6 = 1) and must have a value (Word 1, bit 14 = 1),

IsWord 6 if: data-unit is constant in size (Word 4, sign bit = 0) and if
1t has no variable occurrences (Word 5, bit 13 = 0)

Is Word 7 if: data-unit is variable in size (Word 4, sign bit = 1) and if
it has no variable occurrences (Word 5, bit 13 = 0)

Is Word 8 if: data-unit has a variable number of occurrences (Word 5,
1 =

Bits 1 Is there a literal or ''data-name-4?" (0 = literal, 1 = data-
name 4)
2 Is there a hashed option? (0= no, 1= yes)

3-21 Not used
22-36 Location within this memory load of data-name-4 or if it is a
literal, location within this entry of the literal (bits 31-36
only).

Word 7 QOccurrence Information

Word 7 may not be present. Word 7 is needed only when there is a
variable number of occurrences (Word 5, bit 13 = 1). Word 6 will be
present.

Bits 1-21 Not used
22-36 Minimum number of occurrences

Word A Editing Information

Word A might be present. Presence of Word A is indicated by Word 1,
sign = 1. Word A is located by bits 7-12 in Word O.

Bits 1 Is there zero suppression? (0 = no, 1 = yes)
2 Is there check protection? (0= no, 1 = yes)
3 Is there a floating dollar sign? (0 = no, 1 = yes)
4 I8 there a high order dollar sign? (0= no, 1 = yes)
5 Is there a "blank when zero option?"' (0 = no, 1 = yes)

Q63-6N

Bits 6 Not used
7-12 If there is zero suppression, check protection, or a floating
dollar sign, how many characters preceding the decimal point
will not be replaced by blanks if zero?
13 Are there standard commas? (0= no, 1= yes)
14 Is there a real decimal point? (0 = no, 1 = yes)

15-18 Not used

19-24 Number of places to move from low order end of field to find
the real decimal point.

25 Is there a carriage return given? (0= no, 1 = yes)

26 Is the carriage return leading or trailing? (0 = leading, 1 =
trailing)

27 Is there a tab? (0 = no, 1 = yes)
28 Is the tab leading or trailing? (0 = leading, 1 = trailing)

29 Are there any control characters in the picture that canaot be
located by bits 25-28? (0 = no, 1 = yes)

30 Are there any insertion characters which cannot be located by
the above bits (such as zeros, blanks, non-standard commas,
decimal points, and dollar signs)? (0= no, 1= yes)

31-36 Number of contrcl characters

Word B up to Word B + 4 Data Unit's Data-Name

Note: Word B is located by bits 1-6 of Word 2. The last word is
negative and space filled. First characterof data-name will
occupy bits 1-6 of 18t word; second, bits 7-12 of 1st; etc.

Word C-? List of Descendants for these Data-Units

Word C might be present. Word C is found by using bits 7-12 of Word 2.
There will be one word for each set of descendants.

Bits S 1f equal to 1, then last word
1-8 Not used

7-21 Location of the DDT entry for one of these data-units
descendant

22-36 Location of the DDT entry for one of these data-units descendants

Q63-6N 4-31

4-32

Note: If bitg S-1 and bits 22-36=0, an odd number of descendants
is indicated.

Word D—? The Picture for this Data-Unit

Word D might be present. Word D is found by using bits 13-18 of Word 2.
Note: The firat character of the Picture will occupy bits 1-6 of the
first word; the second, bits 7-12 of the first, etc. The last
word is negative and space filled.

Word E —? The value for this Data-Unit

Word E might be present. Word E is found by using bits 19-24 of Word 2.
The format is the same as Word D above.

Word F The Data-Name Address Word for the Data-Name in the Occur's
Depending Upon Option

Word F might be present. Word F is found by using bits 25-30 of Word 2.
Word F is present only if word 5, bit 13 = 1.

Bits 1-21 Not used

22-36 Location within this memory load of the DDT entry for the
data-name in the Occur's Depending Upon Option

Word G—? Size Information for the Record

Word G is present only for data-units which have level-number 01 and
are in the file section. Word G is found by using bits 25-30 of Word 2.

Note: The only difference between the Size Information in the File
Description Block and in the DDT is in bits 22-36 of Word 1,
(for a variable block with sentinel control). In the DDT, the
location of the sentinel value is relative to the beginning of
the memory load.

Word H A 2nd "Jump-information Word"

Word H may be present. Word H is found by using bits 31-36 of Word 2.
Word H is present only if there is a sign-name or range for this data-name.

Bits 1-6 Location of this data-unit's range*
7-12 Location of the DNAW for the sign-name*
13-36 Not used

* If the 6 bits are zero, then the item is not present.

Q63-6N

St

4.4.3

Word I-? The Range

Word 1 may be present. Word I is found by using bits 1-6 of Word H.

Note: The format of the Range is the same as for the Value except
there are two literals. The first is the lower bound, the
second, the upper bound. See Note for Word E above.

Word J The Data-Name-Address Word for the data-name in the ""SIGN
IS™ Option

Word J may be present. Word J is found by using bits 7-12 of Word H.

Bits 1-21 Not used

22-36 Location within this memory load of the DDT entry for the
Sign-name

DDT Formats for Condition-Name

Q63-6N

Word 0 ;
Bits 1-3 DDT entry ID {or condition-name: 001
4-6 Not used
7-12 Location within this entry of the condition-name
13-21 Size of previous DDT entry
22-36 Location of the next DDT entry
Word 1:
Bits 1-6 Number o literals
7-12 The number of bits to express each literal
22-36 Location in DDT of Parent
Word A up to Word A + 4 The Condition-name (1 to 5 words)

Note: Each cordition-name may have more than 1 literal associated
with it. The literals will be in ascending order. A range is
considered as two literals.

Each literal will be right synchronized. In the first word of
each literal, the first 6 bits will contain information about the
the literal. If bit 1 = 1, this means that this literal is the lower
bound of a range. The next literal will then be the upper bound.

4-33

If the conditional variable has a high order sign, then the first
character of the literal will be the sign. If it has a sign bit or
"gsign-name, " then the literal's sign is indicated by bit 6 in the
first word. The number of machine words that a literal occupies
is as follows:

Literal size in bits Machine words
1-30 1
31-66 2
67-102 3
2115-2160 61

One to 360 FIELDATA cheracters are permissable for each literal.

4.4.4 DDT Formats for Procedure-Name

Word 0:
Bits 1-3 DDT entry 1D for procedure-name: 100

4 1s this a paragraph or section-name? (0 = paragraph, 1=
gection)

5 Is this procedure-name duplicated? (0 = no, 1 = yes)

6 Not used

7-21 First "short FISN" in procedure
22-36 Location of next DDT entry
Bits 1-6 Not used
7-21 Last "short FISN" in procedure
22-36 Location of section-name in DDT

Note: This has no me;ming if bit 4 of Word zero is 0.

4-34 Q63-6N

*

.

ettt GTMENE e—

Words 2 up to 6 Procedure-Name (1 to 5 words)

The last word of the procedure-name will be negative.

4.4.5 DDT Format for Condition-Names for Switches

Word 0:

Q63-6N

Bits 1-3 DDT entry ID for switch condition-names: 011
4 On-Off status (0 = on, 1 = off)
5-6 Not used
7-12 Hardware-number
13-18 If bit 4 = 1, it is the size of the preceding DDT entry
19-21 Not used
22-36 Location of next DDT entry
Note: This ia used to find other status DDT entry. If this entry
is ON: See bits 22-36 for OFF status. If this entry is

OFF: ON status can be obtained by subtracting number in
bits 13-18 from this entry's origin.

Word 1 up to Word 5

The condition-name for this switch status. First character will occupy

bits 1-6 of 1st word; second, bits 7-12 of 1st; etc. The final word will

be negative. Final word will be left justified with right master space

fill.

4-35

4.5 RUN 8 TABLE FORMATS

This section contains the format of every input table used by Run 8.

4.5.1 Block Source Program (BSP)

4-36

1. Table name —Block Source Program (BSP)

2. Table symbols -LPON set by RUN 1.0 and RUN 1.1

LPON set by RUN
LPON set by RUN

3. Number of words/entry—14

1.2
1.3

4. Number of entries —dependent on Source Program

5. Table function—used by RUN 8 to produce a Block Source Program

listing.

6. Table format -

Word 1.

— e s

Bits 1-12

O O =22 & O s W N

6 FIELDATA characters

columns 1-6 of Source Program

68 FIELDATA characters columns 7-12 of Source Program

6 FIELDATA characters
6 FIELDATA characters
6 FIELDATA characters
6 FIELDATA characters
6 FIELDATA characters
6 FIELDATA characters
6 FIELDATA characters
6 FIELDATA characters

. 6 FIELDATA characters
. 6 FIELDATA characters
. 6 FIELDATA characters
Word 14:

2 FIELDATA characters

columns 13-18 of Source Program
columns 19-24 of Source Program
columns 25-30 of Source Program
columns 31-36 of Source Program
columns 37-42 of Source Program
columns 43-48 of Source Program
columns 49-54 of Source Program
columns 55-60 of Source Program
columns 61-66 of Source Program
columns 67-72 of Source Program

columns 73-78 of Source Program

columns 79-80 of Source Program

Q63-6N

—

13-24 binary card count

25-36 Identification code -FIELDATA BB

4.5.2 Expanded Source Program (ESP)

1. Table name —Expanded Source Program (ESP)
2. Table symbol-LPIN set by RUN 1.3

3. Number of words/entry —dependent on size of Procedure Division
Source Program Sentence

4. Number of entries —dependent on Source Program

5. Table function—used by RUN 8 in producing an Object Program
Assembly listing

6. Table format
Word 1-n:

6 FIELDATA characters of Procedure Division Source Pro-
gram per word. Word n has blank fill (05).

Word n+1:
Bits 1-18 not used
19-24 FIELDATA Cor zero*
25-36 Identification code -FIELDATA EE

4.5.3 BSP1 Correction Table

1. Table name -BSP1 Correction Table

2. Table symbols —TX08 set by RUN 1.0+ 1.1
TXON set by RUN 1.2
TX1N set by RUN 1.3

3. Number of words/entry—1

*FIELDATA C is used whenever a table entry is continued across tape blocks.

Q63-6N 4-37

4. Number of entries —dependent on number of errors found by the trans-
lation and generation phases in the Source Program.

5. Table function —used by RUN 8 in producing a Block Source Program
listing with errors.

6. Table format

Bits 1-12 not used
13-24 binary card count
25-36 binary error fiag number

4.5.4 BSP2 Correction Table

1. Table name —BSP2 Correction Table

2. Table symbols —ER48 set by RUN 4
ER38 set by RUN 3

3. Number of words/entry—1

4. Number of entries —~dependent on number of errors found by the
generation phase.

5. Table function —used in an indirect way by RUN 8 with the FISN-card
count table to produce a BSP1 Correction Table. This allows errors
found in generation phase to appear in the BSP listing.

6. Table format

Bits 1-6 not used
7-21 generator call FISN
22-23 not used
24-36 binary error flag number

4.5.5 FISN-Card Count Table

1. Table name ~FISN-Card Count Table

2. Table symbol-CF18 set by RUN 1.3

3. Number of words/entry -1

4-38 Q63-6N

L,

Number of entries —dependent on number of Procedure Division
Source Program cards of input.

Table function—used by RUN 8 in major error handling. It links up
cards containing Procedure Division Source Program statements with
the generator calls produced.

Table format—

Bits 1-6 not used
7-21 generator call FISN
22-36 binary card count

4.5.6 Symbol Table

Q63-6N

1.

2
3.
4

Table name —-Symbol Table

Table symbol-TMT7N set by RUN 7
Number of words/entry—1
Number of entries in Part 1-16

Number of entries in Part Il —dependent on the number of subroutines
used by the generator.

Table function—used by RUN 8 in the CAP-to-binary conversion,
Core Storage Allocation listing, Subroutine Assembly listing, and
Object Program Assembly listing.

Table format for Part I —

Bits 1-6 area symbol
7-21 binary size in words
22-36 area starting address at object time

Table format for Part Il -

Bits 1-6 not used
7-21 subroutine starting address at object time
22-27 subroutine name
28-30 internal symbol
31-36 duplication number

4-39

N.B. There are 16 areas of object code specified in Part I of the Symbol
table:

1. Initialization
File Data Table

Input -output files

[- B X}

Working storage
5. Data Division constants
6. Multiple file reel data
7. Internal constants
8. Alter table
9. Address function values
10. Address function starting bits
11. Open storage
12. Special storage
13. Undefined exit
14. Subroutine instructions
15. Running program instructions
16. Running program END

In Part II of the Symbol Table the Subroutine name, internal symbol,
and duplication number 0 or 1 comprise the Subroutine symbol. Internal symbol -
ranges from 0-7.

If = 0, start of subroutine, otherwise an internal entry point of subroutine.

Duplication number —allows for same subroutine to be used repeatedly with minor
revisions.

4.5.7 File Requirement Table

1. Table name —~File Requirement Table
2. Table Symbol -TI97 set by RUN 7

4-40 Q63-6N

3. Number of words/entry— 8

4. Number of entries —dependent on the number of file descriptions in
the Data Division Source Program.

5. Table function—used by RUN 8 in the CAP-to-binary conversion,
Core Storage Allocation listing, Subroutine Assembly listing, and
Object Program Assembly listing.

6. Table format -

Word 1:
Bits 1-6 binary file number
7-12 number of words in this entry
13-14 1/0
15-18 CR
17 B
18 A
19 P
20-21 not used
22-36 file buffer area address at object time
Bits 1-5 size of current record area, currency index
address, or zero
16-21 count of characters in file name
22-36 size of one file buffer
Word 3:
Bits 1-6 number of tape drives
7-36 truncated 5-bit tape drive numbers
Words 4-8: file name characters with blank fill (05).
NOTES:

1. 1/0 = 01 if input file
= 10 if output file
= 11 if input-output file

Q63-6N 4-41

CR = 00 if no current record area or currency index
= 10 if current record area
= 11 if currency index

B = 0 if single buffer
= 1 if double buffer

Address in word 1 is initial buffer address.

CRA size —if CR = 10, then in RUN 8 the size of the current record
area is contained here. RUN 8 replaces it by the starting address
of the current record area.

CI address —if CR = 11, then RUN 8 places the address of the currency
index here.

Buffer size —if B bit = 1, another buffer of same size immediately
follows.

A = 0 unique area for this file
= 1 this file shares same area in core as file in previous entry.
P = 1if file is parallel processed (both files open at the same time)

with file in preceding File Requirement Table entry.

4.5.8 Assigned Procedure Table

4-42

1.
2.
3.

Table name —Assigned Procedure Table

Table symbol—-TB7N set by RUN 7
Number of words/entry in Part 1-2

Number of words/entry in Part Il ~dependent on the number of
characters in each paragraph or section name.

Number of entries —~dependent on the number of paragraphs in Procedure
Division Source Program.

Table function-used by RUN 8 in CAP-to-binary conversion, and Data
Analyzer listing.

Table format:

Partl
Word 1:
Bits 1-6 Key
7 name; 1 = gection-name

0 = paragraph-name

Q63-6N

8-15 not used
16-21 character count of procedure-name
22-36 jump address, relative to start of table, to pro-
cedure -name in Part I
Word 2:
Bits 1-15 new internal sequence no. (NISN)
16-21 not used
22-36 absolute starting address of this paragraph at
object time
Part 11
Words 1-n

6 characters of procedure name per word with master space fi'l (00).

N.B. < 5 since procedure name must be < 30 characters.

4.5.9 Data Analyzer Table

Q63-6N

1.

2.
3.
4

(3]

Table name ~Data Analyzer Table

Table symbol —-TK46 set by RUN 6

Number of words/entry—3

Number of entries —dependent on the number of data units and pro-
cedure-names referred to in Procedure Division Source Program.

Table function —-used by RUN 8 to produce the Data Analyzer listing.
Table format —
Data-Names
Bits 1-6 Data Analyzer sort key (00)
7-21 key size = 3
22-36 itemsize= 3

4-43

Word 2:

Bits 1
2-3
4-18
19-21
22-36
Word 3:

Bits 1-36

Procedure-names

Word 1:
Bits 1-6
7-21
22-36
Word 2:
Bits 1
2-3
4-18
19-21
22-36
Word 3:
Bits 1-36

4.5.10 Data Name List

4-44

= 0, specifies a data-name
DDT Memory Load Number
DDT ENTRY Address

Not used

Generator call FISN

not used (zero)

Data Analyzer sort key (00)
key size = 3

item size = 3

= 1, specifies a procedure-name
not used

beginning FISN of procedure -name
not used

generator call FISN

not used (zero)

Table name —-Data Name List -

Table symbol-LNO1 set by RUN 1.3

Number of words/entry in Index section—72
Number of words/entry in Section I-2

Number of words/entry in Section Il —~dependent on number of characters

in data-name.

Q63-6N

4., Number of entries in Sections I and II-dependent on number of

Q63-6N

data-names in the Data Division Source Program.

Table function—used by RUN 8 to produce Data Analyzer listing.

Table format—
Index format:
Words 1-72
36 pairs of words for data-names starting with A-Z, 0-9
Odd Word:
Bits 1-12 jump to Section I for data-names with 1-6
characters
13-24 jump to Section I for data-names with 7-12
characters
25-36 jump to Section I for data-names with 13-15

Even Word:

characters

Bits 1-12 jump to Section I for data-names with 16-18
characters
13-24 jump to Section I for data-names with 19-24
characters
25-36 jump to Section I for data-names with 25-30
: characters
Section I
Word 1:

Characters 1-6 of data-name; if data-name < 6 characters
master space fill (00)

Bits 1-6 duplication jump
7-21 Section I location of parent
22-36 jump to Section II
Section II

Word 1-n remaining characters of data-name n-4

4-45

Word n+1

Bits S negative
1-8 file number if file
T-12 number of parents to unique level of qualification
13 not used
14 = 0, not condition switch

= 1, condition switch

15 simple subscript
= 0, no
16 ﬁle{’ 1, yes
= 0, no
17 record{: 1, yes
= 0, no
18 condition-nameq _ 1, yes
s 0, no
18 renamed{‘ 1, yes
20-21 DDT memory load number
22-36 DDT entry location

4.5.11 Subroutine CAPS

1. Table name -—-Subroutine CAPS

2. Table symbol-MS6EN set by RUN 6
3. Number of words / entry -2
4

Number of entries —dependent upon Procedure Division Source Pro-
gram complexity.

5. Table function—used by RUN 8 in CAP-to-binary conversion and
Subroutine Assembly listing.

6. Table format —

(See 4.6 for a full underatanding of this format.)

4-46 Q63-6N

4.5.12 Running CAPS
1. Table name —Running CAPS

Table symbol-MX7N set by RUN 7

Number of words/entry -2

w» W N

Number of entries —dependent upon Procedure Division Source Program
complexity.

5. Table function—-used by RUN 8 in CAP-to-binary conversion and
Object Program Assembly listing.

6. Table format -

(See paragraph 4.6 for a full understanding of this format.)

Q63-6N ’ 4-47

4.6 MACRO-INSTRUCTIONS AND RELATED TABLE FORMATS

This section gives the final MOBILE I formats of Macro-Instructions,
Subroutine Calls, CAP instructions, and some Generated Tables.

4,.6.1 Macro-Instructions

4.6.1.1 Macro-Instruction Header Format

Word 1:
Bits 1-6 Macro-instruction key
7-18 Macro-name
19 Transfer
20-21 Q-reg. usage
22-23 not used
24 statement usage
25-30 operand count
31-36 item size
Word 2:
Bits 1-29 FISN
30«36 FISN Macro-counter

In general, the generators turn each Generator Call into a set of macros.
If a macro in a set {8 the destination of a transfer, it must be assigned a unique
FISN (an XFISN). Under each FISN, then, there may be a set of macros, all of
whick have the same FISN in their headers but each of which has a different FISN
Macro-counter, assigned in integer order starting with zero.

The statement bit is set equal to one in the first macro produced for any
Generator Call whose statement bit equalled one.

The Q-register usage bits indicate how the Q-register is to be used when
this macro is executed. RUN 6 uses this information to minimize the number of
loads of the Q-register.

4-48 Q63-6N

e SENE D MR anc

FpEr——

A——— A— —— pre———1

E comeiaed

Q-Register Values:

00 = Transparent; no use of Q-register on this macro.

01 = Mask use; exactly one use to load a mask.

10 = Hash use; an arithmetic use which destroys the contents.
11 = Multiple use; last use is a mask.

If the Q-register usage equals 01, the macro expects RUN 6 to create the
load. RUN 6 expects the first operand of the macro to be the required mask
reference.

The transfer bit is set = 1 if there are any transfers out of this macro,
conditional or unconditional. The macro name identifies the macro.

For each macro name there is a unique CAP skeleton store on the Systems
tape for RUN 6. A CAP skeleton is simply a block of CAPs which may have
any number of blank fields in them to be filled by parameters. The values of the
parameters are given to the operands, which occupy one word each at the end of
the macro.

4.6.1.2 CAP Modification Words

Between the two-word header and the set of operands, there may be one
or more CAP modification words. The CAP modification words control possible
deletions and repetitions of CAPs in the CAP skeleton. Every macro has asso-
ciated with it one of three types of CAP modification, reflected by bits 7-9 in
Word 1 of the header:

CAP modification type 0—-no modifications
CAP modification type 1-—repetitions only
CAP modification type 2-—deletions only

In type 0, there are no CAP modification words. In type 1, there is one
CAP repetition word for every 36 CAPs in the skeleton. In type 2, there is one
CAP deletion word for every 36 CAPs in the skeleton.

In the first repetition and/or deletion word, bits 1 to 36 correspond, in
order, to the first 36 CAPs in the skeleton; in the second repetition and/or dele-
tion word, bits 1 to 36 correspond, in order, to the 37th through the 72nd CAPs
in the skeleton, etc.

Q63-6N 4-49

4.6.1. 3 Relation of Operands and Skeleton

Bits 13-15 of Word 1 of each CAP in the stored skeleton, called the part
number, determine how many parameters in the CAP must be filled with operands,
and which positions the parameters occupy in the CAP. Specifically:

Bit 13 = 1 means the ''m'' or modifier portion must be filled with

an operand.
14 = 1 means the "i"
an operand.

or index portion must be filled with

15 = 1 means the "a' or address portion must be filled with

an operand.

13 & 14= 1 in a "MOV" CAP instruction means the "i-m" or index-

modifier portion must be filled with one operand.

The general task of macro-to-CAP conversion performed by Run 6 involves
examining each skeleton CAP in order, determining from the part number that n
operands are needed to fill the parameters (n = 0, 1, 2,0or 3), picking up the next
n operands in order from the macro, and placing them properly in the converted
CAP. In this fashion all the macro operands are matched with all the CAPs in the
skeleton.

Other tasks are performed at the time of macro-to-CAP conversion.

4.6.1.4 Effect of CAP Deletion Word

For any bit in a CAP deletion word which is equal to 1, the corresponding
CAP in the skeleton is deleted. The operands which would have filled the CAP if
it had not been deleted are now used to fill the next CAP which requires operands.

4.6.1.5 Effect of CAP Repetition Word

For any bit in a CAP repetition word which is equal to 1, the corresponding
CAP in the skeleton is to be repeated, each time with different operands (0 to 3 of
them) from the macro. The first operand is an integer giving the total number of
appearances of the repeated CAP. In the absence of the repetition bit, it would
have been inserted in the repeated CAP (or in the next CAP requiring operands it
the repeated CAP did not require any). The next operand after the integer ope-rand
becomes the first operand in the first appearance of the CAP. Thereafter each
set of n operands is placed in one repetition of the CAP until the requested number

4-50 Q83-6N

of appearances has been completed, (where n is the number of operands called for
by the part number of the repeated CAP).
4.6.1.6 Macro-Instruction Operands

There are four types of operand in the macros, each occupying exactly one
computer word They are: FISN, Source Data, MOBILE Dats, and Subroutine
Reference

4.6.1.7 Fixed Internal Sequence Number (FISN) Operand

A FISN operand is used for references to locations in the Main Running
Program. The format is:

Bit 1 FISN Key (1)
2-30 FISN
31-36 FISN increment

Note that no statement bit :s necessary here. A FISN increment of value X
has the same effect on the reference as a "'+X'' has when appended to a symbol in a
variable field.

4.6.1.8 Source Data Operand

A Source Data Operand is used for references to fields, records, or buffer
areas associated with the input-output files, the Working Storage Section, or the
Constant Section of the Source Program Data Division. The format is exactly that
of the Data Address Word in the Data Reply, thus permitting the generators to
transfer one directly to the other. The format is repeated here:

Bits 1-3 Source Data Key (000)
4-9 File number
10-21 Fixed increment
22-23 Blank
24 Decrement bit
25 Blank
26 Buffer bit
27-38 Final function number

Q63-6N 4-51

The decrement bit is set equal to 1 if the fixed increment field actually
represents a decrement.

The buffer bit is set equal to 1 if the reference is to the buffer area for a
file, rather than to a record or field within the file.

The final function number means the final address function serial number
assigned by Run 4 in the get of address functions (if there were any) for this
reference.

4.6.1.9 MOBILE Data Operand

A MOBILE Data Operand is used for references to tables created by
MOBILE and for assembly type references that are also developed internally.
The format is:

Bits 1-3 MOBILE Data Key (010)
4-17 Blank
18 Constant bit
19-24 MOBILE Data Symbol
25-36 Increment

The MOBILE Data Symbol is a location symbol for the first address in the
table and the increment has the same significance as a '"+X" in an Assembly
Program, except where the increment is discussed in detail below. The following
is a list of the MOBILE Data Symbols currently assigned. (The two octal values
listed after the name denote the 6-bit Symbol that goes into bits 19-24 of the
MOBILE Data Operand):

File Data (21) - This table includes 16 words of information for each

input-output file in the Program. It is used only by
the input-~output subroutines.

Tape Data (22) —This table includes 1 word for each tape drive used by
the Object Program. This table is also used only by
the input-output subroutines.

Internal Constant (24) —This table includes all the constants and masks
required by the generators.

Alter (25) —This table includes a symbolic transfer for each ALTER

statement and each alterable GO statement in the
Source Program.

4-52 Q63-6N

Address Function (27) —~This table contains one word for each unique
address function reference produced by Run 4 and compressed
by Run 6.

Starting Bit (30) —This table contains one word for each unique type 5
address function reference. (Review Section 4.3.3.)
Such functions involve variable starting bits.

Open Storage (31)~This area serves as temporary storage for the set
of macros produced for each Generator Call.

Special Storage (32) —This area includes a set of full-word binary
integer fields to which subscript variables, other than
simple subscripts, are moved prior to being used in
address functions. A simple subscript is defined as a field-
word binary integer field in Working Storage.

Undefined Exit (33) - The space for this table is actually reserved in the
Initialization area. The nth location in this table, at object
time contains the absolute address of the partial ent
point ENTRY-N, if the Object Program which includes
this partial entry point is loaded at the same time. Other-
wise it contains a transfer to a halt and print-out routine.

The first location in the Undefined Exit Table is the [-O-BUSY
register, which is zero only when the object in-out system
has finished processing all in-out instructions stacked in

its buffer.

Self-Reference Plus (34)~This Symbol has the same significance as
the asterisk (*) in an assembly program.

Self-Reference Minus (34) — This Symbol has the same significance as
the asterisk (*) in an asgsembly program, except that
the increment is treated as a decrement; i.e., "-X" in-
stead of "+X".

If the Constant bit equals 1, then bits 19-21 are ignored and bits 22- 36
contain a 15-bit binary constant. This constant can be a register refernce (whose
first digit is 7), an absolute address, or any other 15-bit constant. Of course, if
this constant is used to fill a modifier field in a skeleton CAP, only the last 12
bits will be interpreted. If it is used to fill an index field, only the last 3 bits

would be interpreted.

If no operands are required, a blank word 3 must be appended to conform
to the rules of Sort Run 5.

Q63-6N 4-53

4.6.1.10 Subroutine Reference Operand

A Subroutine Reference Operand is used for any reference to a location in a
subroutine, whether it is the entrance or any other location. The format is:

Bits 1-3 Subroutine Reference Key (011)

4-12 Blank

13-18 Increment

19-20 Blank

21 Decrement

22-27 Subroutine name

28-30 Subroutine Internal Symbol

31-38 Subroutine counter

Bits 22-36 are the Subroutine Symbol and bits 13-18 serve as a word incre-
ment (""+X" in an assembly program) to this Symbol. If bit 21 equals one, bits
13-18 represent a decrement instead of an increment.

The Subroutine Symbol is divided into three parts as follows:

1. Subroutine Name: a unique name for the Subroutine CAP skeleton
stored on the systems tape for Run 6. (A CAP skeleton is simply
a block of CAPs that may have any number of blank fields in them
to be filled by parameters; for every subroutine or macro, Run 6
has a CAP skeleton available.)

2. Subroutine Internal Symbol: The initial location of the subroutine
{s automatically assigned 000" as its internal symbol. Otherwise,
within each subroutine CAP gkeleton, up to seven other locations
can be assigned internal symbols for reference purposes. Each
15-bit Symbol associated with one subroutine has the same value
in bits 31-36 and 22-37; the Symbols are differentiated solely by
the value of bits 28-30, which are the Subroutine Internal Symbol
in the operand format.

3. Subroutine Counter: If a subroutine has a fixed CAP skeleton, its

routine Counter is always zero, and it is produced only once

for the object program, regardless of the number of calls on it.

If a subroutine has a variable CAP gkeleton, either because of

blank operands to be filled with parameters, or because of instruc-

tions which can be deleted or repeated, that subroutine is "duplicat-

able." This means that this subroutine appears once in the Object

Program for each unique call on it, and there may be up to 63 calls

on a duplicatable subroutine. The counter is used to distinguish be-

tween the different compiler-initialized versions of the same sub-

routine in one Object Program.

4-54 Q63-6N

Note that a subroutine that is entirely initialized at object time by a calling
sequence in the Running Program is, from the viewpoint of MOBILE, a fixed sub-
routine with the counter equal to zero.

4.6.2 Subroutine Calls

4.6.2.1 Subroutine Call Header Format

Bits 1-6 Subroutine Call Key
7-21 Blank
22-36 Item size
Bits 1-9 Blank
10-12 CAP modification type
13-21 Operand count
22-217 Subroutine name
28-30 Initial Subroutine Symbol (000)
31-36 Subroutine counter

Bits 22-36 of Word 2 have the same significance here as bits 22-36 of the
Subroutine Reference operand, except that in the Subroutine Call Header the initial
Internal Symbol, with bits 000 in the middle, must be used.

Each generator, particularly the input-output generator, is responsible for
maintaining the Subroutine Counter for any duplicatable subroutine. If any duplicat-
able subroutine can be called by more than one generator, its counter must be in a
General Symbol (as opposed to Table Symbol) location during the generation cycle.

Bits 10-12 of Word 2, the CAP modification type, have the same significance
as bits 7-9 of Word 1 in the Macro header format, as the following section shows.

4.6.2.2 Subroutine Call Body

The body of a Subroutine Call is constructed exactly the same as the body of
a macro. The header is immediately followed by from 0 up to 20 CAP modification

Q63-6N 4-55

words. The actual number is controlled by the CAP modification type and the
number of CAPs in the CAP skeleton for this subroutine.

Following the CAP modification words, if there are any, are any number of
one-word operands. These operands can be FISN, Source Data, MOBILE Data, or
Subroutine Reference operands just as in a macro, except that in Source Data oper-
ands the final function number must be zero.

The interpretation of the CAP modification words and the treatment of the
operands in doing the subroutine-to-CAP conversion in Run 6 is exactly the same
as in the macro-to-CAP conversion in Run 6.

When the subroutine is fixed, which means that it has no CAP modification
words and no operands, a blank word 3 must be appended to the Subroutine Call
header before the call is placed in the Batch file output of Run 3. This is done
because the fixed key in Sort Run 5 includes bits 1-6 of Word 1, all of Word 2, and
all of Word 3; so there must be a Word 3 present in every item. In this situation
bits 10-21 of Word 2 will be blank.

4.6.3 CAP Instructions

CAP instructions, also known as CAPs, are produced in Run 6 from the sub-
routine and macro CAP skeletons. The CAPs are counted in Run 7 and are processed
into binary relocatable coding and Symbolic Listing in Run 8. The general format ofa
CAP is:

Word 1:
Bits 1-3 CAP type
4-9 Machine instruction or pseudo-op
10 Not used
11 Address function
12 Statement
13-14 Blank
15 Decrement
16~36 Address portion

4-56 Q63-6N

et

Word 2:
Bits 1-15 CAP symbol

16-36 Index-modifier portion

4.6.3.1 CAP Symbols

Except for the CAP Symbol, the fields in the format have the same signifi-
cance for subroutine CAPs as for Main Program Running CAPs (or just Running
CAPs).

In a subroutine CAP, the CAP Symbcl is a Subroutine Symbol, consisting
of the three fields, Subroutine Name, Internal Symbol, and Subroutine Counter just
as in bits 22-36 of a Subroutine Reference Operand.

In a Running CAP, the CAP Symbol is a NISN (ALL FISNs are converted to
NISNs in Run 6).

4.6. 3.2 Other Fields in CAP Format

There are two CAP types at present. Type 0 is the ordinary assembly
machine instruction. Type 1 is either an assembly pseudo-operation, such as
BSS, or a Special CAP. The Special CAPs to date are the two CAPs involved in
ALTER statements; the Alterable TRUCAP and the Alter MOV CAP,

For ali type 0 CAPs, bits 4-9 contain the actual machine instruction, that
is, the 6 bits that go into bits 1-6 of the binary instruction.

For types 1 and 2 CAPs, bits 4-9 contain a code corresponding to the par-
ticular pseudo-op or specizl CAP,

The Address Function bit equals 1 in any CAP which was inserted by Run 6,
not as a result of processing a macro CAP skeleton, but for computing the loading
address functions.

The purpose of the Address Function bit is to cause Run 8 to place some
special English description on the same line in the Triple Listing of this instruc-
tion. The statement bit equals 1 in the first CAP in any CAP skeleton of a macro
whose statement bit equalled 1.

Q63-6N 4-57

The decrement bit equals 1 if the following conditions were met in Run 6:

1. A source Data operand was inserted into the address portion of
this CAP when its gkeleton was processed.

2. The decrement bit (bit 15) equalled 1 in the Source Data Operand

reference.

4.6.3.3 Address Portion Field in the CAP Format

There are four possible operand types in the Address Portion field, and
these correspond exactly to the four types of operand references in the body of a

Macro-instruction or Subroutine Call.

as follows:

Bits 16-17
18
19-24
25-36
18-17
18
19-24
25-36
16-17
18-20
21
22-36
16-17
18-20
21
22-36

4-58

Source Data Operand Key (00)
Buffer

File number

Fixed increment

MOBILE Data Operand Key (01)
Constant

MOBILE Data Symbol
Increment

Subroutine Reference Operand Key (10)
Blank

Decrement

Subroutine Symbol

NISN Operand Key (11)

Blank

Decrement

NISN

The formats of the address operands are

Q63-6N

The decrement bit in this Subroutine Reference operand is the same as the
decrement bit (bit 21) in the Subroutine Reference operand in a Macro or Subroutine
Call. The Decrement bit in the NISN operand cannot come from a FISN operand
reference in a macro or Subroutine Call. It can only appear as a result of manip-
ulations by Run 6 for optimization purposes. For both Subroutine Reference and
NISN operands the 6-bit increment which comes from the Macro or Subroutine Call
operand is placed in bits 16-21 of the index-modifier portion field in Word 2 of the
CAP format. It is understood that usually the decrement bit will be 0 meaning that
the increment is positive, and usually the increment itself will be zero meaning
that there is no increment.

4.6.3.4 Index-Modifier Portion Field in the CAP Format

There are three possible interpretations of index-modifier portion field.
The interpretations do not depend on key bit as in the address portion field, but
they do depend on the CAP instruction. The formats are as follows:

1. For any input-output instruction:

Bits 16-18 Blank
19-24 Selected Device Code or "J" portion
25-27 Blank
28-36 Word-block count or "K'" portion

2. For the MOV instruction, the index-modifier portion field is inter-
preted as a single symbolic address in the same manner as the
address portion field. The only difference is that there can be no
increment or decrement for Subroutine Reference or NISN operands.
Although not relevant to Runs 7 and 8, it should be pointed out that
no Source Data operands with non-zero final function numbers can
be inserted in a MOV skeleton CAP because of the absence of
indexing.

3. For all other instructions

Bits 16-21 Increment for Subroutine Reference or NISN
operand in Address portion field
22-24 Index, or "G'" portion
25-36 Modifier, or "B'" portion

Q63-6N 4-59

4.6.3.5 Special CAP Formats

4-60

Format of the Alterable TRU CAP:

Word ;

Bits 1-3
4-9
10-12
13-14
15
16-36

Word 2:
Bits 1-15
16-21
22-26
27-36

CAP type (15)

Machine instruction (405)
Same as ordinary CAP
Blank

Decrement

Address portion: Subroutine Reference
or NISN operand as in ordinary CAP

CAP Symbol
Increment for Address portion operand
Blank

New Serial number i

Format of the Alter MOV CAP:

Word 1:
Bits 1-3
4-8
10-12
13-21
22-36
Word 2:
Bits 1-15
16-24
25-26
27
28-36

CAP type (1g)

Machine instruction (52,)
Same as Ordinary CAP
Destination Serial number i

NISN or subroutine symbol

CAP Symbol

New Serial number j
Blank

Subroutine

Origin Serial number k

Q63-6N

If the Subroutine bit in the Alter MOV CAP (bit 27 of Word 2) equals 1, then
bits 22-36 of Word 1 are to be interpreted as a Subroutine Symbol; otherwise, they
are interpreted as a NISN.

4.6.4 Object Core Allocation for the Listing

The core storage area, during the run of a single Object Program @s
opposed to a set of group-loaded programs) is divided into six major areas for list-
ing purposes:

1.

Initialization—This includes some service routines, such as the Rerun
Stop and Restart Routines, the Partial Entry Routine and Intersegment
Monitor, and the Undefined Exit and Trap Tables where required. The
routines in this area are initially loaded by the MOBILE loader.

Input-Output File—This includes all the single and double buffer areas
and current record areas assigned to the input and output files named
in the Source Program. No data is entered into this area by the
MOBILE loader. All the areas after the Input-Output File Area are
filled with the Object Program and required data by the MOBILE loader.

Working Storage—This includes the core space necelurg to contain
all the records and fields named in the Working Storage Section.

MOBILE Data—This aresa includes all the MOBILE Data Tables, such
as File Data, Tape Data, Internal Constant, Alter, Address Function,
Starting Bit, Open Storage, and Special Storage. It also includes the
Transfer Table, if one is needed, and the External Constants which the
user requested in his Constant Section. Note that altho;%h Working
Storage and Constant data are considered to be files number 1 and 2
throughout compilation, for purposes of core allocation and the listing,
they are not included in the Input-Output File Area.

Subroutine~This area includes the binary instructions of the fixed and
duplicatable subroutines requested by the generators.

Main Running Program-—This area includes the binary instructions
resulting from direct translation of the Procedure Division of the
Source Program. Any USE or ENTER Declarative coding comes first,
followed by the coding for the Main Body of the Procedure Division.
The first line of coding for the Main Body is considered to be the
entrance point of the Object Program.

For purposes of relocation of binary instruction operands, the last three of
these Major Areas are combined into one area called the Running Program Area.

Q83-6N

4-61

4.6.5 Generated Table Formats

4.6.5.1 Alter Table Format

4.6.5.2 XFISN Table Format

4-62

Word 1:
Bits 1-6

7-21

22-30

31-36

Word 2

Bits 1-29
30-35
36

Word 3:
Bits 1-29
30-36

Word 1:
Bits 1-6
7-30
31-36

Word 2:
Bits ~ 1-29
30-36

Word 3:
Bits 1-36

Alter Key

Serial number
Blank

Item Size (000038)

Destination FISN
Blank
Alter bit

Origin FISN
Blank

XFISN Table Key
Blank

Item size (3)

XFISN
Blank

Blank

Q63-6N

4.6.5.3 Link Table Format

Word 1:
Bits 1-6
7-9
10-12
13-15
16-18
19-21
22-24
25-30
31-36

Word 2:
Bits 1-29
30-36

Word 3:
Bits 1-29
30-36

Link Table Key

High Frequency
Frequency Assigned
Perform Range Enter
Perform Range Exit
Single Exit

Missing Fall Through Bits
Blank

Item Size

Destination FISN

Blank

Origin FISN
Blank

No Link Table entry is to be produced for the fall-through associated with

conditional transfer.

Sort Run 5 uses bits 1-6 of Word 1 as the major key, Word 2 as the inter-

mediate key, and Word 3 as the minor key. Bits 31-36 of Word 1 contains the

item size.

Q63-6N

4-83

4.7 MOBILE COMPILER OUTPUT LISTINGS

This section describes the format of the 5 types of output listings that
appear on the Compiler Printing Tape (tape - 43). On-line printing of all listings
will occur on the line printer unless the user wishes to suppress certain listings.

MOBILE produces five types of output listings; these are:

Block Source Program
Core Storage Allocation
Data Analyzer
Subroutine Assembly

Object Program Assembly (also referred to as a
Triple Listing)

Al o

Each listing is produced and written on the Compiler Printing Tape (tape -
43) in the above order with an EOF separating each output listing. Each listing
that is not suppressed by the programmer is listed on the on-line printer at com-
pilation time. Since every listing is on tape, it is possible to obtain a particular
suppressed listing at a later time (assuming the listing tape has been saved).

In order to suppress a particular output listing from being listed on the
on-line printer, the word NO must be punched in the correct columns of the con-
trol card, which is the first card of every compilation as listed below:

Listing Card Columns

1. Block Source Program 38-39 No = Suppress; Blank =
On-line Printer

2. Core Storage Allocation 40-41 No = Suppress; Blank =
On-line Printer

3. Data Analyzer 44-45 No = Suppress; Blank =
On-line Printer

4. Subroutine Assembly 46-47 No = Suppress; Blank =
On-line Printer

5. Object Proiram Assembly 42-43 No = Suppress; Blank =
(triple On-line Printer

4-64 Q63-6N

ndur uo juasaad 1
‘uoryedtyrjuapt werdoxd

JaquInN

e WP R R s

a¥eg

sdey;
HONYd Srioquiis

weidoag adanog jo

furysy] weadoag aoInog yoold

awrsu wealloxg

C)

4-65

ndut
uo wasaad
i ‘Jaqunu
aus] auQ jpouanbag pre)

Q63-6N

Gl ©

883JppR 18100
Bunyaess

9z18 paopm [ewTO3(q

S83Jppe 18100
Bunaeys

9Z18 pa

Jaqunu a8eg

S,

Tewtdaq

883Jppe 1e100
Bunjxe;s

@

Toquis

seaJe supnoIqng D

Jaquinu 3(1d

seoae oIl ‘g

<ADNKMMAEZOMRNEHD> Aro

Toquis

SEadY 810D [elauadd) VY

“FunsT] UOTIBOO[[Y 2JBJI0}§ 310D

suononsuy weafoxd Suruuny

cr B

aureu sunnoIqng

aureu I1g

pud weadoag Suruuny

suoHONIISU] upnoIqig
X3 pauyapun

afeuoig Ter0adg
ajwxoig uadp

jsyg Bunaeig NOJ S83Jppy
g3aneA uonoung ssAppy
alqel 3NV

SUEISUOD TEUIIU]

eieq 199y a1 sdnumK
arqe], wieq ade],

arqeL ®1e(q I1d

adeioig ®vg ATIHON
SUBISUOD [BUINXT
afwaoyg Buryaom

safrd ndino-induy
uonyezenuL

Jweu valy

Q63-6N

4-66

*% SIYITEND

Joquinu 3Fed

&) @

wer W AN SER o

SwIeu- aINpadold

Jaquinu 3aduanbas [PUIIJUT MIN==s
aureu-e)8p ® JO uoryedryIrenb uy posn SIWBU-BIEP UIIBJe#
aureu-uoroag J0 ydeadereds

x%x NSIN

Saweu-2INpadold ‘g

sawwu-ejeq 'V
Bunys1] 1azL1EUY BieQ

aureu wexdoxdg

@)

®

#*30U3IIJaJd JO I0eld

aweu-ejeq

*3DU3X3JAI JO 30V[d

4-67

Q63-6N

Jaqunu 38eg

&)

uoponIIsUT JYIW

Bunis1T Aiqusmey surnnoiqng

aureu wrexdoad

©,

aup

Jeg,
uoredo]
orI0qUIAG

Te100 ut
uonPNIIsUY

SS2.ppe 18300

Q63-6N

4-68

wexloxd 20anog papuedxge

uoy}ed0] 12100 Ut
uononageur VI |onoquiks |uononasur | ssaappe 12100

ADUINLIB s ST UOISIAIQ r.nzvooc.nnm

Jaqunu afeg{ Funstr] A[quassy wexdoag 393[q0

awreN urexSoag

@ @ e @ @ d o

4-69

Q63-8N

4.8 QUALIFICATION TASK IN RUN 1.3 AND DATA NAME LIST DESCRIPTION
4.8.1 Introduction

If a data-name "A" has been used to denote more than one unit of data,
"A" must still be made unique. Uniqueness of a data unit can be obtained by the
Qualification Method, i.e., "A" which is contained in B which is contained in
C. . .. etc. Up to 49 levels of Qualification may be used (including the file
level). Since the data-name, referring to the unit of data, (base-data-name) may
not be unique in itself, it is qualified by other data names that have lower level
numbers and therefore higher rank in the hierarchy of data-names until unique-
ness is achieved. Unnecessary qualification is allowed; i.e., qualification beyond
uniqueness. For instance, for purposes of documentation, unnecessary qualifi-
cation may be helpful. Direct ascent through the hierarchy of data-names is not
necessary; that is, a base data-name may be made unique by qualification in a
group item, record or file, skipping all intermediate levels of qualification. The
section of Run 1. 3 which traces this qualification and thus obtains the unique base
data-name if it exists is called "PT 166",

4.8.2 Table Input Descriptions

Input to "PT 166" is in the form of Tables, DNLA and DNMLA. DNLA is
the Data Name List. DNMLA refers to the entries in DNLA of the base data name
and its qualifiers. DNMLA entries are not the exact entries in DNLA of the above-
mentioned data-names. They are merely the first of all such data-names; i.e.,
the base-data-name "A" will have as its entry in DNMLA a reference to the first
"A" of perhaps several "A'"'s in DNLA. It is the task of "PT 166" to determine
which "A", if any, meets the requirements of having all the qualifiers listed in
DNMLA + 1, +2, +N. The Data Name List is divided into three parts: Index,
Section I, and Section III.

The index consists of two-word entries, one entry for each of the letters of
the alphabet and one entry for each of the numbers 0 - 9. Therefore, the index is
72 words in length. Each of these two-word entries consists of gix 12-bit jump
numbers relative to the start of the DNLA*., These jump numbers are determined

«The first word of the DNLA immediately preceding the index is called the block
label word; jumps are relative to this.

4-70 Q63-86N

by the number of characters in a data-name. If a data-name (containing N
characters) begins with a letter or number "X", then one obtains from the index
entry for "X" and the jump number for "N" characters the Section I entry for the
first of all data-names starting with X" and having "N" characters.

BLOCK LABEL WORD*~1 WORD L]
INDEX —m e 72 WORDS BITS 1 1213 2415 3
2 WORDS/ENTRY 1-6 CHAR. | 7-12 CHAR. [13-15 CHAR.] ,

JUMP NO. 1|JUMP NO. 2|JUMP NO. 3
6 JUMP NUMBERS

16-18 CHAR.(19-24 CHAR.{25-30 CHAR.
T YE TOHE SLOCK LABEL | juMp NO. 4[JumP NO. sliume NO. 6|®

Figure 4-1. Structure of Index for Data-Name List

The Section I entry (two words/entry) for a data-name consists of the first
six characters of the data-name (1st word) and a second word which is divided
into three parts. Part 1, operation code field is a 6-bit jump number. Part 2,

g-b field,is a 15-bit absolute address of the Section I entry of the parent*# of this
data-name. Part 3, the address field, is a 15-bit absolute address of the remain-
ing characters of the data-name if any exists (Section III entry). When the Part 1
value is added to the Part 3 value, the result is an absolute address for the in-
formation word*#* (Section III entry) of the data-name being considered.

*The first word of the DNLA immediately preceding the index is called the block
label word; jumps are relative to this.
+=»That unit of data which immediately contains this data-name; i.e., the first
parent as opposed to the first qualifier,
#»#:DDT Reference Word Address

Q63-6N

4-71

SECTION 1ST 6 CHARACTERS

JUMP No. | PARENT SECTION 1li

ADDRESS OF
SEC.HI ADDRESS
2 WORDS/ENTRY REMAINING CHAR.

1ST 6 CHARACTERS

SECTION NI
Jume | paRent
SEC. Il | ADDRESS ADORESS OF

| d REMAINING CHAR.

1ST 6 CHARACTERS

SECTION IiI
JUMP PARENT
SEC. Il | ADDRESS ADDRESS OF -—I

REMAINING CHAR.

+

SECTION Wl [,

BEST OF CHARACTERS
1 INFORMATION WORD
1 INFCRMATION WORD

| PR Ry -— o - — o o wim s o)

BEST OF CHARACTERS
1 INFORMATION WORD
1 INFORMATION WORD

bl mam e oe s - ———-d

BEST OF CMMCTRS
1 INFORMATION WORD
| INFORMATION WORD

bmd o - = = = o= = = e o

IMPLIES ADDITION.
X IMPLIES THAT TH'S INFORMATION PASSES IN TWO
DRECTIONS AS INDICATED BY THE LINES.
----------MUBTI“M\Y“
ONE INFORMATION WORD IN GNNSIC"ONIII
ENTRY IF THERE ARE TWO OR MORE BQUAL BASE DATA

NAMES, THIS IS NOT THE CASE AS DEPICTED ABOVE.
1 IMPLIES THAT INFORMATION WORD S NEGATIVE.

NOTE: +

L

Figure 4-2, Structure of Section I and Section III

4-72 Q63-6N

s oEms OGN S e

occur when dealing with duplicated data-names.
name, AAAAAAA, presented below:

The Section III entry for a data-name contains the remaining characters
of the data-name (if any) and an information word for each of the data-names
which have this Section III entry as their Section III entry.

The Data Name List is sorted alphabetically on the first word and numer-
ically on the 6 possible size groups to which the complete data-name belongs
(see page 4-76). Therefore, it is possible for a situation as outlined below to
For example, consider the data-

Al a1l a Tl a T

SECTION il
JUMP NO.| PARENT ADDRESS OF
SEC. Il | ADDRESS REMAINING
CHARACTERS
1
A 1l Al A 1T A T A 1A
SECTION Il [
JUMP NO. [pppeENT REMAINING
SEC. Wi
+
¢ ATA Tl AT ATATRA
SECTION 1li
“g"‘g NO- | paeNT 2%&2%% —
+
'—ed A | REMAINING CHARACTERS
- | INFORMATION WORD
. REMAINING
B C CHARACTERS
=11 | INFORMATION WORD
™ A REMAINING CHARACTERS
1| INFORMATION WORD

' NOTE: + IMPLIES ADDITION. X IMPLIES THAT THIS INFORMATION PASSES IN TWO

DIRECTIONS AS INDICATED BY THE LINES.

Figure 4-3, Possible Structure of DNLA Containing Duplicated Data-Names

Q63-6N

4-73

Besides the previous possible structure of DNLA containing duplicated data-
names, the following possible structure might also occur:

A A A A A A

SECTION | JUMP | PARENT
EcTio = ADDRESS Y -
A A A A A A
JUMP | PARENT v |-
=2 ADDRESS
A A A A A A
—IUMP
=3 | ADDRESS Y e

T

SECTION 1II A
| JUMP=1_1 1 | INFORMATION WORD
1ST AAAAAAA
JUMP = 2 INFORMATION WORD
% 1 | 2ND AAMAAMA
JUMP = 3 INFORMATION WORD
NOTE: SuthaBe= By 3RD AAAAAAA

+ IMPLIES ADDITION

X mlses THAT THE INFORMATION PASSES IN TWO DIRECTIONS AS INDICATED BY THE

Figure 4-4. Other Possible Structure of DNLA
Containing Duplicated Data-Names

A DNLA with duplicated data-names may appear in either of the two
atructures outlined or in any combination of them.

DNMLA is the other table used by "PT 166". As was mentioned before,
it contains information regarding qualification. The first word of DNMLA con-
tains in its g-b field a 15-bit absolute address of the Section III entry for this
particular base data-name, In the address field of this first word is the Section I
absolute address. This is not necessarily the address of the wanted base data-
name, but merely the first such entry. In DNMLA +1 is a field with similar
information, but this time it refers to the first qualifier (least inclusive). In
DNMLA + 2 is the information concerning the next qualifier, In DNMLA + N is
the information concerning the last qualifier.

4-74 Q63-6N

g W A e

- —

.

op I-M A
BASE
SECTION IlI SECTION |
DNMLA DATA
ADDRESS ADDRESS NAME
SECTION Il SECTION | | 1sT
DNMLA +1 ADDRESS ADDRESS QUALIFIER
SECTION M SECTION || 2ND
DNMLA +2 ADDRESS ADDRESS QUALIFIER
SECTION Ill SECTION | | NTH
DNMLA +N* ! ADDRESS ADDRESS QUALIFIER

Figure 4-5, Structure of DNMLA

4,8.3 Procedure

"PT 166' begins with the first base data-name (pointed out in DNMLA) and
traces its ancestry to see if its parents, grandparents, etc., match the quali-
fiers in DNMLA + 1, etc. If the first base data-name does not meet these re-
quirements, DNLA is searched until the area in which such base data-names may
be found is exhausted. The same process described above is carried out with
each base data~name. If a match is found, the search continues to determine
that no other base data-name has met the same requirements to insure unique-
ness. A count is kept of the number of levels of qualification encountered (by
the parent, grandparent, etc., method) since the qualifiers need not be in im-
mediate succession in DNMLA. ** This count is passed on for use by Run 8.

*Negative sign indicates the last (most inclusive qualifier).

*#*A may be contained in B, C, D, but may be qualified as A in (of) D if this is
sufficient.

Q63-6N 4-75

A+l

A+2

A+3

NOTE:

4-76

CALLING SEQUENCE STRUCTURE "PT 166"

TRL PT 166

Error 1 return: multiple-
defined. Return here if
multiple -defined with Section I
Word 1 address of first match
in ACC and level count in QRG.

Error 2 return: undefined,
Return here if undefined with
zero in ACC and QRG.

Normal return:

Address of Section I
Word 1 in ACC and level
count in QRG.

This routine assumes absolute address of Section I of data-names
and qualifiers in DNMLA (address field). It further assumes the
last entry in DNMLA, i.e., the last qualifier, will have a negative
sign bit.

Q63-6N

PT 166

SAVE
REGISTERS

v

OBTAIN FIRST BASE
DATA—NAME AND
SAVE IT IN ANDSYV

OBTAIN QUALIFIER)
AND SAVE IT IN Q&DSV

OBTAIN PARENT N
AND %)
ADD 1 LEVEL COUNTER i

INCREMENT _,@

LAST
QUALIFIER
INDICATOR

SET?

INCREMENT
1AND J

b

. YES
1.e., is parent addres equal to 0.

Figure 4-6. Calling Sequence Structure Flowchart "PT 166" (1 of 4)

Q63-6N 4-77

SET MATCH
INDICATOR

l

SAVE THIS BASE
DATA~-NAME SECTION

| ADDRESS IN ADXS AND
LEVEL COUNT IN LZ166

INCREMENT k AND RESET | | ON 1st PASS ‘}
AND [TO START OVER1.e. | k WILL BECOME |
1ST PARENT AND 1st QUALI-] 2 2nd PASS |
l A N T -1
OBTAIN BASE i
DATA-NAME | k g’:n |
&) |
‘ L__ N] -J
[DOES BASE DATA
NAME () EQUAL ,_L.@
AWDSV 15t

-8

Figure 4-6. Calling Sequence Structure Flowchart "PT 168" (2 of 4)

4-78 Q63-6N

THE NO. OF
WORDS IN BASE
DATA—NAME §) EQUAL
NO. OF WORDSIN

DOES
BASE DATA
NAME (k) EQUAL
AWDSV Al
THE WAY?

Ist MATCH SECTION | ZERO —eACC
ENTRY IN ADXS—eACC ZERO —+= QRG
LEVEL COUNT FOR FIRST ADD 1 TO
MATCH IN LZ116 PCS

—& QRG

Figure 4-6. Calling Sequence Structure Flowchart "PT 166" (3 of 4)

Q63-6N 4-79

IS

MATCH

INDICATOR
SET?

YES

CORRECT SECTION |
ENTRY IN ADXS —
ACC

CORRECT LEVEL COUNT
IN L2166 — QRG
ADD 2 TO PCS

®

y

RESTORE
REGISTERS

%6

Figure 4-6. Calling Sequence Structure Flowchart "PT 166" (4 of 4)

4-80 Q63-6N

omns SN O BEE s s e

SECTION V
CONCLUSIONS

MOBIDIC MOBILE 1 is complete and is undergoing system testing.

Trouble areas are being crystallized during thetesting, and errors are

being corrected, thus brining MOBIDIC MOBILE I to full operational status.

Q63-6N

5-1

SECTION VI

PROGRAM FOR THE NEXT PERIOD

During the next period acceptance testing will be completed. Final
documentation, including a Final COBOL Reference Manual, will be published.

Q63-6N 6-1

SECTION VII

IDENTIFICATION OF KEY PERSONNEL

7.1 KEY TECHNICAL PERSONNEL

Alvin H. Hatch

Arthur S. Morse

Herbert S. Hughes
Roy Sundgren
Richard Mackler

Manager, Applied Programming
Department

Section Head, Language Implementation
Section

Research Engineer
Senior Engineer

Senjor Engineer

7.2 APPROXIMATE MAN-HOURS EXPENDED

Name

Alvin H. Hatch
Arthur S. Morse
Herbert S. Hughes
Roy Sundgren
Richard Mackler

Q63-6N

102
511
549
475
524
Total 21861

DISTRIBUTION LIST
THIRD QUARTERLY REPORT
DA-36-039-8c-89231

OASD (R&E) Rm 3E1065
ATTN: Technical Library
The Pentagon

Washington 25, D.C.

Chief of Research and Development
OCS, Department of the Army
Washington 25, D.C.

Chief Signal Officer
ATTN: SIGRD
Department of the Army
Washington 25, D.C,

Director, U.S. Naval Research Laboratory
ATTN: Code 2027

Department of the Army

Washington 25, D.C.

Commanding Officer and Director
U.S, Navy Electronics Laboratory
San Diego 52, California

Commander

Aeronautical Systems Division

ATTN: ASPRDL

Wright-Patterson Air Force Base, Ohio

Commander, Rome Air Development Center
ATTN: RAALD
Griffiss Air Force Base, New York

Commanding General

U.S. Army Electronic Proving Ground
ATTN: Technical Library

Fort Huachuca, Arizona

Commanding General

U.S. Army Electronic Proving Ground
ATTN: ADP Department

Fort Huachuca, Arizona

No. Copies.
1

Commander, Armed Services Technical Information Agency
ATTN: TIPCR

Arlington Hall Station

Arlington 12, Virginia

Chief, U.S. Army Security
Arlington Hall Station
Arlington 12, Virginia

Deputy President

U.S. Army Security Agency Board
Arlington Hall Station

Arlington 12, Virginia

Commanding Officer

U.S. Army Electronic Material Support Agency
ATTN: SELMS-ADJ

Fort Monmouth, New Jersey

Corps of Engineers Liaison Office
U.S. Army Electronic Research & Development Laboratory
Fort Monmouth, New Jersey

Commanding Officer

U.S, Army Electronic Research & Development Laboratory
Logistics Division

ATTN: Mr. N.J. Taupeka, SELRA/NPE

Fort Monmouth, New Jersey

Commanding Officer

U.S. Army Electronic Research & Development Laboratory
Data Equipment Branch, Data Processing Facilities Div.
Fort Monmouth, New Jersey

Commanding Officer

U.S. Army Electronic Research & Development Laboratory
ATTN: Director of Engineering

Fort Monmouth, New Jersey

Commanding Officer

U.S. Army Electronic Research & Development Laboratory
ATTN: Technical Documents Center

Fort Monmouth, New Jersey

Commanding Officer

U.S. Army Electronic Research & Development Laboratory
ATTN: Technical Information Div.

Fort Monmouth, New Jersey

No. Copies
10

r—e oumg S s

ADPS Committee

Officer's Department

U.S, Army Signal School
Fort Monmouth, New Jersey

Information Processing Branch
Dept. of Specialist Training
U.S. Army Signal School

Fort Monmouth, New Jersey

MOBIDIC Project Office
CCIS-70 PMSO

U.S. A, Electronics Command
Fort Monmouth, New Jersey

Ordnance Stock Control Agency
APO 58

ATTN: Maj. C.S. Moody

New York, New York

7th Army Stock Control Center
APO 872

ATTN: Capt. D. Lasher

New York, New York

Philco Corporation
ATTN: Mr. S. Berkowitz
3900 Welsh Road

Willow Grove, Pa.

RCA Surface Comm. Division
ATTN: Mr. A. Coleman
Camden, New Jersey

No. Copies

